Advertisement

Emerging Horizons for Industrial Applications of Predatory Bacteria

  • C. Herencias
  • S. Salgado-Briegas
  • M. A. PrietoEmail author
Chapter
  • 22 Downloads

Abstract

This chapter reviews the potential of the predatory bacteria Bdellovibrio bacteriovorus, an obligate predator of other gram-negative bacteria, as a biotechnological tool. Due to the unique lifestyle and the different applications, predatory bacteria have awakened interest to be developed as a lytic tool. The lack of physiological and metabolic information makes difficult this development. However, in the last years, different approaches have been described in order to understand the physiology, morphology, and metabolism of the predators, as well as the population dynamics of the prey-predator interactions. Besides its potential of “living antibiotic”, predatory bacteria have been proposed as a biocontrol agent in the food industry or aquaculture. A recent work using B. bacteriovorus as a biological lytic tool for the recovery of intracellular bioproducts highlighted the potential use of predators in industrial bioprocesses. The bottlenecks of using other Bdellovibrio and like organisms (BALOs) have been also considered and discussed during this chapter.

Notes

Acknowledgments

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme, grant agreement no. 760994-2 (ENGICOIN), the Spanish Ministry of Science, Innovation and Universities (BIO2017-83448-R) and the Community of Madrid (P2018/NMT4389). Sergio Salgado is a recipient of a predoctoral FPU grant (FPU17/03978) from the Spanish Ministry of Universities.

References

  1. Abdelhafez AA, et al. Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett–Burman design and central composite design. Annals of Agricultural Sciences, Faculty of Agriculture, Ain Shams University. 2016;61(1):87–96.  https://doi.org/10.1016/j.aoas.2016.01.005.CrossRefGoogle Scholar
  2. Allouche N, et al. Use of whole cells of. 2004;70(4):2105–9.  https://doi.org/10.1128/AEM.70.4.2105.
  3. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803.PubMedPubMedCentralGoogle Scholar
  4. Avidan O, et al. Identification and Characterization of Differentially-Regulated Type IVb Pilin Genes Necessary for Predation in Obligate Bacterial Predators. Scientific reports Nature Publishing Group. 2017;7(1):1013.  https://doi.org/10.1038/s41598-017-00951-w.CrossRefGoogle Scholar
  5. Bagheri Lotfabad T, et al. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol–gel immobilized cells. Colloids and Surfaces B: Biointerfaces Elsevier BV. 2017;152:159–68.  https://doi.org/10.1016/j.colsurfb.2017.01.024.CrossRefGoogle Scholar
  6. Banitz T, Johst K, Wick LY, Fetzer I, Harms H, Frank K. The relevance of conditional dispersal for bacterial colony growth and biodegradation. Microb Ecol. 2012;63:339–47.PubMedGoogle Scholar
  7. Bratanis E, Molina H, Naegeli A, Collin M, Lood R. BspK, a serine protease from the predatory bacterium Bdellovibrio bacteriovorus with utility for analysis of therapeutic antibodies. Appl Environ Microbiol. 2017;83:e03037–16.  https://doi.org/10.1128/AEM.03037-03016.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cao H, He S, Wang H, Hou S, Lu L, Yang X. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol. 2012;154:413–8.PubMedGoogle Scholar
  9. Cao HP, Yang YB, Lu LQ, Yang XL, Ai XH. Effect of copper sulfate on Bdellovibrio growth and bacteriolytic activity towards gibel carp-pathogenic Aeromonas hydrophila. Can J Microbiol. 2018;64:1054–8.PubMedGoogle Scholar
  10. Capeness MJ, Lambert C, Lovering AL, Till R, Uchida K, Chaudhuri R, et al. Activity of Bdellovibrio hit locus proteins, Bd0108 and Bd0109, links type IVa pilus extrusion/retraction status to prey-independent growth signalling. Plos One. 2013;8:e79759.  https://doi.org/10.71371/journal.pone.0079759.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang CY, et al. The Bdellovibrio bacteriovorus twin-arginine transport system has roles in predatory and prey-independent growth. Microbiology. 2011;157(11):3079–93.  https://doi.org/10.1099/mic.0.052449-0.CrossRefPubMedGoogle Scholar
  12. Chanprateep S. Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng. 2010;110:621–32.PubMedGoogle Scholar
  13. Chanyi RM, Koval SF. Role of type IV Pili in predation by Bdellovibrio bacteriovorus. PLoS One. 2014;9(11)  https://doi.org/10.1371/journal.pone.0113404.
  14. Chen CY, Yen SH, Chung YC. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater. Chemosphere. 2014;117:494–501.PubMedGoogle Scholar
  15. Chen Z, et al. Metabolic engineering of klebsiella pneumoniae for the production of 2-butanone from glucose. PLoS One. 2015;10(10):1–10.  https://doi.org/10.1371/journal.pone.0140508.CrossRefGoogle Scholar
  16. Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2015;2:22–32.Google Scholar
  17. Cotter TW, Thomashow MF. A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J Bacteriol. 1992a;174(19):6011–7.PubMedPubMedCentralGoogle Scholar
  18. Cotter TW, Thomashow MF. Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol. 1992b;174(19):6018–24.PubMedPubMedCentralGoogle Scholar
  19. Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 2011a;110:431–44.PubMedGoogle Scholar
  20. Dashiff A, Keeling TG, Kadouri DE. Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl Environ Microb. 2011b;77:2224–31.Google Scholar
  21. Davidov Y, Jurkevitch E. Predation between prokaryotes and the origin of eukaryotes. BioEssays. 2009;31:748–57.PubMedGoogle Scholar
  22. de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator Bacteria, over a 1-year period. MBio. 2017;8(5):e00959–17.  https://doi.org/10.01128/mBio.00959-00917.CrossRefPubMedPubMedCentralGoogle Scholar
  23. de Eugenio LI, Garcia P, Luengo JM, Sanz JM, San Roman J, Garcia JL, et al. Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442 – characterization of a paradigmatic enzyme. J Biol Chem. 2007;282:4951–62.PubMedGoogle Scholar
  24. Di Gioia D, et al. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Journal of Biotechnology Elsevier BV. 2011;156(4):309–16.  https://doi.org/10.1016/j.jbiotec.2011.08.014.CrossRefGoogle Scholar
  25. Dori-Bachash M, et al. Bacterial intein-like domains of predatory bacteria: a new domain type characterized in Bdellovibrio bacteriovorus. Funct Integr Genomics. 2009;9(2):153–66.  https://doi.org/10.1007/s10142-008-0106-7.CrossRefPubMedGoogle Scholar
  26. Du J, Shao ZY, Zhao HM. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biot. 2011;38:873–90.Google Scholar
  27. Dwidar M, Yokobayashi Y. Controlling Bdellovibrio bacteriovorus gene expression and predation using synthetic riboswitches. ACS Synth Biol. 2017;6:2035–41.PubMedGoogle Scholar
  28. Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-phase Bdellovibrio bacteriovorus responses to extracellular nutrients are analogous to those seen during late Intraperiplasmic growth. Microbial Ecol. 2017;74:937–46.Google Scholar
  29. Elkenawy NM, et al. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports Elsevier BV. 2017;14:47–53.  https://doi.org/10.1016/j.btre.2017.04.001.CrossRefGoogle Scholar
  30. Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol. 2007;189(13):4850–9.  https://doi.org/10.1128/JB.01942-06.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fenton AK, Hobley L, Butan C, Subramaniam S, Sockett RE. A coiled-coil-repeat protein ‘Ccrp’ in Bdellovibrio bacteriovorus prevents cellular indentation, but is not essential for vibroid cell morphology. FEMS Microbiol Lett. 2010a;313:89–95.PubMedPubMedCentralGoogle Scholar
  32. Fenton AK, et al. Manipulating each MreB of Bdellovibrio bacteriovorus gives diverse morphological and predatory phenotypes. J Bacteriol. 2010;192(5):1299–311.  https://doi.org/10.1128/JB.01157-09.CrossRefPubMedGoogle Scholar
  33. Flannagan RS, Valvano MA, Koval SF. Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovirus 109J from bdelloplasts of bacterial prey cells. Microbiology. 2004;150(3):649–56.  https://doi.org/10.1099/mic.0.26761-0.CrossRefPubMedGoogle Scholar
  34. Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol. 2010;12:1391–8.PubMedGoogle Scholar
  35. Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 2009;27:153–76.PubMedGoogle Scholar
  36. Goel A, Wortel MT, Molenaar D, Teusink B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol Lett. 2012;34:2147–60.PubMedPubMedCentralGoogle Scholar
  37. Guelin A, Lepine P, Lamblin D. Water bactericidal activity and the part played by Bdellovibrio bacteriovorus. Ann Inst Pasteur (Paris). 1967;113:660–5.Google Scholar
  38. Gutnick DL, Allon R, Levy C, Petter R, M. W. Applications of acinetobacter as an industrial microorganism. The Biology of Acinetobacter. 1991:411–41.Google Scholar
  39. Harada T, et al. Production of a new acidic polysaccharide, succinoglucan by alcaligenes faecalis var. myxogenes. Agric Biol Chem. 1965;29(8):757–62.  https://doi.org/10.1080/00021369.1965.10858462.CrossRefGoogle Scholar
  40. Harikrishnan R, Balasundaram C, Heo MS. Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol. 2010;29:868–74.PubMedGoogle Scholar
  41. Herencias C, Prieto MA, Martínez V, Smith KS. Determination of the predatory capability of Bdellovibrio bacteriovorus HD100. Bio Protocol. 2017;7:e2177.Google Scholar
  42. Hobley L, et al. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics. 2012;13:670.  https://doi.org/10.1186/1471-2164-13-670.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Huang JCC, Starr MP. Effects of calcium and magnesium ions and host viability on growth of Bdellovibrios. Antonie Van Leeuwenhoek. 1973;39:151–67.PubMedGoogle Scholar
  44. Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and Violacein to kill polymicrobial pathogenic communities. Sci Rep. 2017;7:14415.  https://doi.org/10.11038/s41598-14017-14567-14417.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Im H, Dwidar M, Mitchell RJ. Bdellovibrio bacteriovorus HD100, a predator of gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018;12:2090–5.PubMedPubMedCentralGoogle Scholar
  46. Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS. Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochem Eng J. 2008;39:15–27.Google Scholar
  47. Jurkevitch E, Davidov Y. Phylogenetic diversity and evolution of predatory prokaryotes. ACS Division of Fuel Chemistry, Preprints. 2006.Google Scholar
  48. Kadouri D, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005;71:4044–51.PubMedPubMedCentralGoogle Scholar
  49. Kadouri DE, Tran A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol. 2013;79:5264–71.PubMedPubMedCentralGoogle Scholar
  50. Kim SH, et al. Histamine production by Morganella morganii in mackerel, albacore, mahi-mahi, and salmon at various storage temperatures. J Food Sci. 2002;67(4):1522–8.  https://doi.org/10.1111/j.1365-2621.2002.tb10316.x.CrossRefGoogle Scholar
  51. Koval SF, Hynes SH. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol. 1991;173:2244–9.PubMedPubMedCentralGoogle Scholar
  52. Kumar CG, Anand SK. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 1998;42:9–27.PubMedGoogle Scholar
  53. Lambert C, Sockett RE. Laboratory maintenance of Bdellovibrio. Curr Protoc Microbiol. 2008; Chapter 7: Unit 7B 2.Google Scholar
  54. Lambert C, Sockett RE. Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. FEMS Microbiol Lett. 2013;340(2):109–16.  https://doi.org/10.1111/1574-6968.12075.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lambert C, Smith MCM, Sockett RE. A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003;5(2):127–32.  https://doi.org/10.1046/j.1462-2920.2003.00385.x.CrossRefPubMedGoogle Scholar
  56. Lambert C, et al. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol. 2006;60(2):274–86.  https://doi.org/10.1111/j.1365-2958.2006.05081.x.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lambert C, et al. Mutagenesis of RpoE-like sigma factor genes in Bdellovibrio reveals differential control of groEL and two groES genes. BMC Microbiol. 2012;12(1):99.  https://doi.org/10.1186/1471-2180-12-99.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lin B, Chen SW, Cao Z, Lin YQ, Mo DZ, Zhang HB, et al. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol Immunol. 2007;44:295–301.PubMedGoogle Scholar
  59. Loozen G, Boon N, Pauwels M, Slomka V, Herrero ER, Quirynen M, et al. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe. 2015;35:45–53.PubMedGoogle Scholar
  60. Lu F, Cai J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp enterica serovar Typhimurium. Lett Appl Microbiol. 2010;51:625–31.PubMedGoogle Scholar
  61. Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbuchel A. PHA recovery from biomass. Biomacromolecules. 2013;14:2963–72.PubMedGoogle Scholar
  62. Maier RM, Soberón-Chávez G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl Microbiol Biotechnol. 2000;54(5):625–33.  https://doi.org/10.1007/s002530000443.CrossRefPubMedGoogle Scholar
  63. Margulis L. Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA. 1996;93:1071–6.PubMedGoogle Scholar
  64. Martinez V, de la Pena F, Garcia-Hidalgo J, de la Mata I, Garcia JL, Prieto MA. Identification and biochemical evidence of a medium-chain-length Polyhydroxyalkanoate Depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol. 2012;78:6017–26.PubMedPubMedCentralGoogle Scholar
  65. Martinez V, Jurkevitch E, Garcia JL, Prieto MA. Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol. 2013;15:1204–15.PubMedGoogle Scholar
  66. Martinez V, Herencias C, Jurkevitch E, Prieto MA. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep. 2016;6:24381.  https://doi.org/10.21038/srep24381.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Martínez V, et al. Engineering a predatory bacterium as a proficient killer agent for intracellular bio- products recovery: The case of the polyhydroxyalkanoates. Nat Publ Group. 2016;  https://doi.org/10.1038/srep24381.
  68. Medina, A. a, Shanks, R. M. and Kadouri, D. E. Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J. BMC Microbiol. 2008;8:33.  https://doi.org/10.1186/1471-2180-8-33.
  69. Milner DS, et al. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio. PLoS Genet. 2014;10(4):e1004253.  https://doi.org/10.1371/journal.pgen.1004253.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Morehouse KA, et al. Three motAB stator gene products in Bdellovibrio bacteriovorus contribute to motility of a single flagellum during predatory and prey-independent growth. J Bacteriol. 2011;193(4):932–43.  https://doi.org/10.1128/JB.00941-10.CrossRefPubMedGoogle Scholar
  71. Mukherjee S, et al. Visualizing Bdellovibrio bacteriovorus by using the tdTomato fluorescent protein. Appl Environ Microbiol. 2016;82(6):1653–61.  https://doi.org/10.1128/AEM.03611-15.CrossRefPubMedCentralGoogle Scholar
  72. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, et al. Effect of aquaculture on world fish supplies. Nature. 2000;405:1017–24.PubMedGoogle Scholar
  73. Nikel PI, de Lorenzo V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metabolic Engineering Elsevier Inc. 2018;50:142–55.  https://doi.org/10.1016/j.ymben.2018.05.005.CrossRefGoogle Scholar
  74. Nikel PI, et al. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol. 2016;34:20–9.  https://doi.org/10.1016/j.cbpa.2016.05.011.CrossRefPubMedGoogle Scholar
  75. Ortiz-Marquez JCF, Do Nascimento M, Zehr JP, Curatti L. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol. 2013;31:521–9.PubMedGoogle Scholar
  76. Otto S, Harms H, Wick LY. Effects of predation and dispersal on bacterial abundance and contaminant biodegradation. Fems Microbiol Ecol. 2017;93:fiw241.  https://doi.org/10.1093/femsec/fiw1241.CrossRefPubMedGoogle Scholar
  77. Paoletti A, De Simone E, Ferro V, Orsi C, Campanile E. A new factor in autodepuration of water: Bdellovibrio batteriovorus. Riv Ital Ig. 1967;27:466–80.PubMedGoogle Scholar
  78. Perego P, et al. 2,3-Butanediol production by Enterobacter aerogenes: Selection of the optimal conditions and application to food industry residues. Bioprocess Eng. 2000;23(6):613–20.  https://doi.org/10.1007/s004490000210.CrossRefGoogle Scholar
  79. Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol. 2007;82:233–47.Google Scholar
  80. Piñeiro SA, Williams HN, Stine OC. Phylogenetic relationships amongst the saltwater members of the genus Bacteriovorax using rpoB sequences and reclassification of Bacteriovorax stolpii as Bacteriolyticum stolpii gen. nov., comb. nov. Int J Syst Evol Micrbiol. 2008;58:1203–9.Google Scholar
  81. Prieto A, Escapa IF, Martinez V, Dinjaski N, Herencias C, de la Pena F, et al. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol. 2016;18:341–57.PubMedGoogle Scholar
  82. Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid. 2013;69:231–42.PubMedPubMedCentralGoogle Scholar
  83. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.PubMedGoogle Scholar
  84. Rogosky AM, Moak PL, Emmert EAB. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol. 2006;52:81–5.PubMedGoogle Scholar
  85. Roschanski N, Strauch E. Assessment of the Mobilizable Vector Plasmids pSUP202 and pSUP404.2 as Genetic Tools for the Predatory Bacterium Bdellovibrio bacteriovorus. 2010;  https://doi.org/10.1007/s00284-010-9748-5.
  86. Roschanski N, Strauch E. Assessment of the Mobilizable vector plasmids pSUP202 and pSUP404.2 as genetic tools for the predatory bacterium Bdellovibrio bacteriovorus. Curr Microbiol. 2011;62:589–96.PubMedGoogle Scholar
  87. Roschanski N, et al. Identification of genes essential for prey-independent growth of Bdellovibrio bacteriovorus HD100. J Bacteriol. 2011;193(7):1745–56.  https://doi.org/10.1128/JB.01343-10.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Rotem O, et al. Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A. 2015;112(44):E6028–37.  https://doi.org/10.1073/pnas.1515749112.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Saxon EB, Jackson RW, Bhumbra S, Smith T, Sockett RE. Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol. 2014;14:163.  https://doi.org/10.1186/1471-2180-1114-1163.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schaaper RM. Base selection, proofreading, and mismatch repair during DNA-replication in Escherichia-Coli. J Biol Chem. 1993;268:23762–5.PubMedGoogle Scholar
  91. Schäfer A, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8045426PubMedGoogle Scholar
  92. Scherff RH. Control of bacterial blight of soybean by Bdellovibrio-Bacteriovorus. Phytopathology. 1973;63:400–2.Google Scholar
  93. Schoeffield AJ, Williams HN, Turng BF, Falkler WA. A comparison of the survival of intraperiplasmic and attack phase bdellovibrios with reduced oxygen. Microbial Ecol. 1996;32:35–46.Google Scholar
  94. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol. 2001;24:385–94.PubMedGoogle Scholar
  95. Seidler RJ, Starr MP. Isolation and characterization of host-independent Bdellovibrios. J Bacteriol. 1969;100:769–85.PubMedPubMedCentralGoogle Scholar
  96. Simon R, Priefer U, Puhler A. A broad host range mobilization system for Invivo genetic-engineering – transposon mutagenesis in gram-negative Bacteria. Bio-Technology. 1983;1:784–91.Google Scholar
  97. Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 3Biotech. 2016;6:174.  https://doi.org/10.1007/s13205-13016-10485-13208.CrossRefGoogle Scholar
  98. Sinumvayo JP. Agriculture and Food Applications of Rhamnolipids and its Production by Pseudomonas Aeruginosa. Journal of Chemical Engineering & Process Technology. 2015;06(02):2–9.  https://doi.org/10.4172/2157-7048.1000223.CrossRefGoogle Scholar
  99. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol. 2009;63:523–39.PubMedGoogle Scholar
  100. Steyert SR, Pineiro SA. Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus. Appl Environ Microbiol. 2007;73(15):4717–24.  https://doi.org/10.1128/AEM.00640-07.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Steyert SR, Messing SAJ, Amzel LM, Gabelli SB, Pineiro SA. Identification of Bdellovibrio bacteriovorus HD100 Bd0714 as a Nudix dGTPase. J Bacteriol. 2008;190:8215–9.PubMedPubMedCentralGoogle Scholar
  102. Stolp H, Starr MP. Bdellovibrio Bacteriovorus gen. Et Sp. N., a predatory, Ectoparasitic, and Bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29:217.PubMedGoogle Scholar
  103. Strittmatter W, Weckesser J, Salimath PV, Galanos C. Nontoxic lipopolysaccharide from Rhodopseudomonas-Sphaeroides Atcc-17023. J Bacteriol. 1983;155:153–8.PubMedPubMedCentralGoogle Scholar
  104. Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.Google Scholar
  105. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, et al. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol. 2011;89:1373–86.PubMedGoogle Scholar
  106. Theisen M, Liao JC. Industrial Biotechnology: Escherichia coli as a Host. Ind Biotechnol. 2016:149–81.  https://doi.org/10.1002/9783527807796.ch5.
  107. Tomás-Cortázar J, et al. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microbial Cell Factories BioMed Central. 2018;17(1):1–10.  https://doi.org/10.1186/s12934-018-0880-4.CrossRefGoogle Scholar
  108. Thomashow MF, Rittenberg SC. Penicillin-induced formation of osmotically stable Spheroplasts in nongrowing Bdellovibrio-Bacteriovorus. J Bacteriol. 1978;133:1484–91.PubMedPubMedCentralGoogle Scholar
  109. Tudor JJ, et al. Isolation of predation-deficient mutants of Bdellovibrio bacteriovorus by using transposon mutagenesis. Appl Environ Microbiol. 2008;74(17):5436–43.  https://doi.org/10.1128/AEM.00256-08.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. Plos One. 2010;5:e15628.  https://doi.org/10.11371/journal.pone.0015628.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • C. Herencias
    • 1
    • 2
  • S. Salgado-Briegas
    • 1
  • M. A. Prieto
    • 1
    Email author
  1. 1.Microbial and Plant Biotechnology DepartmentBiological Research Center, CSICMadridSpain
  2. 2.Department of Microbiology, Hospital Universitario Ramón y CajalInstituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain

Personalised recommendations