Environmental and Biotic Factors Impacting the Activities of Bdellovibrio bacteriovorus

  • Hansol Im
  • Leonard E. Bäcker
  • Robert J. MitchellEmail author


‘Everything is everywhere, but the environment selects’

– Lourens Baas Becking

This quote by Dutch botanist Lourens Baas Becking, when extended to microbiology, implies the activities of microorganisms are defined by the environment in which they find themselves, with biotic and abiotic factors alike impacting their activity, metabolism and viability. This is definitely true of Bdellovibrio bacteriovorus-and-like-organisms (BALOs), which are influenced directly by both their environment and the prey metabolic activities, stimuli that can have drastic impacts on the predatory activities of these strains. The goal of this chapter, therefore, is to delve deeper into, and gain a better understanding of, the correlation between predatory bacteria and their environment. Towards this end, we discuss here many of the factors and conditions (biotic and abiotic) that impact BALOs and their activities, including the osmolality, oxygen, serum albumin and indole. We hope through this discussion young scientists will gain a significant understanding of the current hurdles holding BALOs back from many real-world applications, such as in treatment of bacterial infections or within wastewater treatment systems, and encouragement to find solutions.


  1. Amat AS, Torrella F. Isolation and characterization of marine and salt pond halophilic Bdellovibrios. Can J Microbiol. 1989;35:771–8.Google Scholar
  2. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res Int. 2018;25:5164–80.PubMedGoogle Scholar
  3. Askeland RA, Morrison SM. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol. 1983;45:1802–7.PubMedPubMedCentralGoogle Scholar
  4. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803.PubMedPubMedCentralGoogle Scholar
  5. Bagwell CE, Abernathy A, Barnwell R, Milliken CE, Noble PA, Dale T, et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory Bacteria. Front Microbiol. 2016;7:516.PubMedPubMedCentralGoogle Scholar
  6. Baker M, Negus D, Raghunathan D, Radford P, Moore C, Clark G, et al. Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer. Sci Rep. 2017;7:8329.PubMedPubMedCentralGoogle Scholar
  7. Barel G, Sirota A, Volpin H, Jurkevitch E. Fate of predator and prey proteins during growth of Bdellovibrio bacteriovorus on Escherichia coli and Pseudomonas syringae prey. J Bacteriol. 2005;187:329–35.PubMedPubMedCentralGoogle Scholar
  8. Beck S, Muller FD, Strauch E, Brecker L, Linscheid MW. Chemical structure of Bacteriovorax stolpii lipid A. Lipids. 2010;45:189–98.PubMedGoogle Scholar
  9. Boileau MJ, Clinkenbeard KD, Iandolo JJ. Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can J Vet Res. 2011;75:285–91.PubMedPubMedCentralGoogle Scholar
  10. Boileau MJ, Mani R, Breshears MA, Gilmour M, Taylor JD, Clinkenbeard KD. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res. 2016;77:1017–28.PubMedGoogle Scholar
  11. Burger A, Drews G, Ladwig R. Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch Mikrobiol. 1968;61:261–79.PubMedGoogle Scholar
  12. Cao H, He S, Lu L, Yang X, Chen B. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Antonie Van Leeuwenhoek. 2014;105:423–30.PubMedGoogle Scholar
  13. Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol. 2015;130:13–20.PubMedGoogle Scholar
  14. Cao HP, Yang YB, Lu LQ, Yang XL, Ai XH. Effect of copper sulfate on Bdellovibrio growth and bacteriolytic activity towards gibel carp-pathogenic Aeromonas hydrophila. Can J Microbiol. 2018;64:1054–8.PubMedGoogle Scholar
  15. Chauhan A, Fortenberry GZ, Lewis DE, Williams HN. Increased diversity of predacious Bdellovibrio-Like Organisms (BLOs) as a function of eutrophication in Kumaon Lakes of India. Curr Microbiol. 2009;59:1–8.PubMedPubMedCentralGoogle Scholar
  16. Choi S, Choi EY, Kim DJ, Kim JH, Kim TS, Oh SW. A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I). Clin Chim Acta. 2004;339:147–56.PubMedGoogle Scholar
  17. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep. 2015a;5:15598.PubMedPubMedCentralGoogle Scholar
  18. Choi SY, Yoon KH, Lee JI, Mitchell RJ. Violacein: properties and production of a versatile bacterial pigment. Biomed Res Int. 2015b;2015:465056.PubMedPubMedCentralGoogle Scholar
  19. Choi SY, Im H, Mitchell RJ. Violacein and bacterial predation: promising alternatives for priority multidrug resistant human pathogens. Future Microbiol. 2017;12:835–8.PubMedGoogle Scholar
  20. Dashiff A, Kadouri DE. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol. 2011;26:19–34.PubMedGoogle Scholar
  21. Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 2011a;110:431–44.PubMedGoogle Scholar
  22. Dashiff A, Keeling TG, Kadouri DE. Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl Environ Microbiol. 2011b;77:2224–31.PubMedPubMedCentralGoogle Scholar
  23. Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol. 2006;8:1667–73.PubMedGoogle Scholar
  24. de Chateau M, Holst E, Bjorck L. Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. J Biol Chem. 1996;271:26609–15.PubMedGoogle Scholar
  25. Duncan MC, Forbes JC, Nguyen Y, Shull LM, Gillette RK, Lazinski DW, et al. Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun. 2018;9:4757.PubMedPubMedCentralGoogle Scholar
  26. Dwidar M, Hong S, Cha M, Jang J, Mitchell RJ. Combined application of bacterial predation and carbon dioxide aerosols to effectively remove biofilms. Biofouling. 2012a;28:671–80.PubMedGoogle Scholar
  27. Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012b;45:71–8.PubMedGoogle Scholar
  28. Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ. Patterning bacterial communities on epithelial cells. PLoS One. 2013;8:e67165.PubMedPubMedCentralGoogle Scholar
  29. Dwidar M, Nam D, Mitchell RJ. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ Microbiol. 2015;17:1009–22.PubMedGoogle Scholar
  30. Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-phase Bdellovibrio bacteriovorus responses to extracellular nutrients are analogous to those seen during late Intraperiplasmic growth. Microb Ecol. 2017;74:937–46.PubMedGoogle Scholar
  31. Fratamico PM, Whiting RC. Ability of Bdellovibrio-Bacteriovorus 109j to lyse gram-negative food-borne pathogenic and spoilage bacteria. J Food Prot. 1995;58:160–4.PubMedGoogle Scholar
  32. Freeman LR, Angelini P, Silverman GJ, Merritt C Jr. Production of hydrogen cyanide by Pseudomonas fluorescens. Appl Microbiol. 1975;29:560–1.PubMedPubMedCentralGoogle Scholar
  33. Fry JC, Staples DG. Distribution of Bdellovibrio-Bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol. 1976;31:469–74.PubMedPubMedCentralGoogle Scholar
  34. Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.PubMedPubMedCentralGoogle Scholar
  35. Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT. A novel treatment protects Chlorella at commercial scale from the predatory bacterium Vampirovibrio chlorellavorus. Front Microbiol. 2016;7:848.PubMedPubMedCentralGoogle Scholar
  36. Garcia CJ, Pericleous A, Elsayed M, Tran M, Gupta S, Callaghan JD, et al. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep. 2018;8:14025.PubMedPubMedCentralGoogle Scholar
  37. Guo YB, Pan Q, Yan SQ, Chen YH, Li MJ, Chen D, et al. Bdellovibrio and like organisms promoted growth and survival of juvenile abalone Haliotis discus hannai Ino and modulated bacterial community structures in its gut. Aquacult Int. 2017;25:1625–43.Google Scholar
  38. Hall NH, Isaza R, Hall JS, Wiedner E, Conrad BL, Wamsley HL. Serum osmolality and effects of water deprivation in captive Asian elephants (Elephas maximus). J Vet Diagn Investig. 2012;24:688–95.Google Scholar
  39. Hoshino T, Kondo T, Uchiyama T, Ogasawara N. Studies on the biosynthesis of Violacein .1. Biosynthesis of Violacein – a novel rearrangement in tryptophan-metabolism with a 1,2-shift of the indole ring. Agric Biol Chem Tokyo. 1987;51:965–8.Google Scholar
  40. Huang JCC, Starr MP. Effects of calcium and magnesium ions and host viability on growth of Bdellovibrios. Antonie Van Leeuwenhoek. 1973;39:151–67.PubMedGoogle Scholar
  41. Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, et al. Bdellovibrio bacteriovorus directly attacks pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front Microbiol. 2014;5:280.PubMedPubMedCentralGoogle Scholar
  42. Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci Rep. 2017a;7:14415.PubMedPubMedCentralGoogle Scholar
  43. Im H, Son S, Mitchell RJ, Ghim CM. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum. Sci Rep. 2017b;7Google Scholar
  44. Im H, Dwidar M, Mitchell RJ. Bdellovibrio bacteriovorus HD100, a predator of gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018;12:2090–5.PubMedPubMedCentralGoogle Scholar
  45. Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL. Detection and identification of Bacteriovorax stolpii UKi2 Sphingophosphonolipid molecular species. J Am Soc Mass Spectrom. 2007;18:394–403.PubMedGoogle Scholar
  46. Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S, Jonasson P, et al. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem. 2002;277:8114–20.PubMedGoogle Scholar
  47. Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol. 2000;66:2365–71.PubMedPubMedCentralGoogle Scholar
  48. Kadouri DE, Tran A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol. 2013;79:5264–71.PubMedPubMedCentralGoogle Scholar
  49. Kadouri D, Venzon NC, O’Toole GA. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol. 2007;73:605–14.PubMedGoogle Scholar
  50. Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.PubMedGoogle Scholar
  51. Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One. 2013;8:e61850.PubMedPubMedCentralGoogle Scholar
  52. Kelley JI, Turng BF, Williams HN, Baer ML. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl Environ Microbiol. 1997;63:84–90.PubMedPubMedCentralGoogle Scholar
  53. Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol. 2015;65:593–7.PubMedPubMedCentralGoogle Scholar
  54. Kuehl FA, Buhs RP, Putter I, Ormond R, Lyons JE, Chaiet L, et al. D-4-Amino-3-Isoxazolidone, a new antibiotic. J Am Chem Soc. 1955;77:2344–5.Google Scholar
  55. Lederberg J. Smaller fleas ... ad infinitum: therapeutic bacteriophage redux. Proc Natl Acad Sci USA. 1996;93:3167–8.PubMedGoogle Scholar
  56. Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34:426–44.PubMedGoogle Scholar
  57. Li H, Chen C, Sun Q, Liu R, Cai J. Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol. 2014;80:6346–54.PubMedPubMedCentralGoogle Scholar
  58. Li N, Chen H, Williams HN. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms. Gene. 2015;562:132–7.PubMedPubMedCentralGoogle Scholar
  59. Marbach A, Shilo M. Dependence of marine Bdellovibrios on potassium, calcium, and magnesium-ions. Appl Environ Microbiol. 1978;36:169–77.PubMedPubMedCentralGoogle Scholar
  60. McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can J Microbiol. 2017;63:350–8.PubMedGoogle Scholar
  61. Michaels R, Hankes LV, Corpe WA. Cyanide formation from glycine by nonproliferating cells of Chromobacterium violaceum. Arch Biochem Biophys. 1965;111:121–5.PubMedGoogle Scholar
  62. Monnappa AK, Dwidar M, Seo JK, Hur JH, Mitchell RJ. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep. 2014;4:3811.PubMedPubMedCentralGoogle Scholar
  63. Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the responses of human epithelial cells to predatory bacteria. Sci Rep. 2016;6:33485.PubMedPubMedCentralGoogle Scholar
  64. Mun W, Kwon H, Im H, Choi SY, Monnappa AK, Mitchell RJ. Cyanide production by Chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. MBio. 2017;8Google Scholar
  65. Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in Perialpine Lakes. Appl Environ Microbiol. 2019;85Google Scholar
  66. Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R, Williams HN. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol. 2007a;9:2441–50.PubMedGoogle Scholar
  67. Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R, Williams HN. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol. 2007b;9:2441–50.PubMedGoogle Scholar
  68. Pineiro S, Chauhan A, Berhane TK, Athar R, Zheng G, Wang C, et al. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the Chesapeake Bay reveals distinct estuarine strains. Microb Ecol. 2013;65:652–60.PubMedGoogle Scholar
  69. Procopio RE, Silva IR, Martins MK, Azevedo JL, Araujo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis. 2012;16:466–71.PubMedGoogle Scholar
  70. Sangwan N, Lambert C, Sharma A, Gupta V, Khurana P, Khurana JP, et al. Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes. Environ Microbiol Rep. 2015;7:812–23.PubMedGoogle Scholar
  71. Schoeffield AJ, Williams HN. Efficiencies of recovery of Bdellovibrios from brackish-water environments by using various bacterial species as prey. Appl Environ Microbiol. 1990;56:230–6.PubMedPubMedCentralGoogle Scholar
  72. Schoeffield AJ, Williams HN, Turng B, Fackler WA Jr. A comparison of the survival of Intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. Microb Ecol. 1996;32:35–46.PubMedGoogle Scholar
  73. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol. 2001;24:385–94.PubMedGoogle Scholar
  74. Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid a containing alpha-D-mannoses that replace phosphate residues: similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem. 2003;278:27502–12.PubMedGoogle Scholar
  75. Seidler FJ, Starr MP. Factors affecting intracellular parasitic growth of Bdellovibrio Bacteriovorus developing within Escherichia Coli. J Bacteriol. 1969;97:912.PubMedPubMedCentralGoogle Scholar
  76. Shatzkes K, Tang C, Singleton E, Shukla S, Zuena M, Gupta S, et al. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep. 2017;7Google Scholar
  77. Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol. 2002;52:2089–94.PubMedGoogle Scholar
  78. Starr MP, Seidler RJ. Bdellovibrios. Annu Rev Microbiol. 1971;25:649.PubMedGoogle Scholar
  79. Stolp H, Starr MP. Bdellovibrio Bacteriovorus Gen. Et Sp. N., a predatory, Ectoparasitic, and Bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29:217–48.PubMedGoogle Scholar
  80. Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis. 2017;70:485–9.PubMedGoogle Scholar
  81. Thomashow MF, Rittenberg SC. Penicillin-induced formation of osmotically stable spheroplasts in nongrowing Bdellovibrio bacteriovorus. J Bacteriol. 1978;133:1484–91.PubMedPubMedCentralGoogle Scholar
  82. Van Essche M, Sliepen I, Loozen G, Van Eldere J, Quirynen M, Davidov Y, et al. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep. 2009;1:228–33.PubMedGoogle Scholar
  83. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, et al. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol. 2011;26:52–61.PubMedGoogle Scholar
  84. Varon M, Shilo M. Interaction of Bdellovibrio Bacteriovorus and host bacteria .I. kinetic studies of attachment and invasion of Escherichia Coli B by Bdellovibrio Bacteriovorus. J Bacteriol. 1968;95:744.PubMedPubMedCentralGoogle Scholar
  85. Willcox MD, Patrikakis M, Loo CY, Knox KW. Albumin-binding proteins on the surface of the Streptococcus milleri group and characterization of the albumin receptor of Streptococcus intermedius C5. J Gen Microbiol. 1993;139:2451–8.PubMedGoogle Scholar
  86. Williams HN. A study of the occurrence and distribution of Bdellovibrios in estuarine sediment over an annual cycle. Microbial Ecol. 1988;15:9–20.Google Scholar
  87. Williams HN, Falkler WA Jr. Distribution of bdellovibrios in the water column of an estuary. Can J Microbiol. 1984;30:971–4.PubMedGoogle Scholar
  88. Williams HN, Schoeffield AJ, Guether D, Kelley J, Shah D, Falkler WA. Recovery of Bdellovibrios from submerged surfaces and other aquatic habitats. Microbial Ecol. 1995;29:39–48.Google Scholar
  89. Williams HN, Turng BF, Kelley JI. Survival response of Bacteriovorax in surface biofilm versus suspension when stressed by extremes in environmental conditions. Microb Ecol. 2009;58:474–84.PubMedGoogle Scholar
  90. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, et al. Injections of predatory Bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol. 2016;26:3343–51.PubMedPubMedCentralGoogle Scholar
  91. Zheng G, Wang C, Williams HN, Pineiro SA. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater Bacteriovorax. Environ Microbiol. 2008;10:2515–26.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hansol Im
    • 1
  • Leonard E. Bäcker
    • 1
    • 2
  • Robert J. Mitchell
    • 3
    Email author
  1. 1.School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
  2. 2.Biofilm CentreUniversity of Duisburg-EssenEssenGermany
  3. 3.School of Life SciencesUlsan National Institute of ScienceUlsanKorea (Republic of)

Personalised recommendations