Advertisement

Secondary Metabolism of Predatory Bacteria

  • Angela Sester
  • Juliane Korp
  • Markus NettEmail author
Chapter
  • 30 Downloads

Abstract

Chemical mediators form the basis of microbial communication and are further known to influence the composition of multispecies consortia. It is thus not farfetched to ascribe such molecules also an important role in predator-prey interactions at the microscale. Already in 1984 two researchers, Eugene Rosenberg and Mazal Varon, speculated about a possible correlation between antibiotic production in myxobacteria and the predation strategy of these soil bacteria. However, it took almost 30 years until first evidence for their hypothesis was presented. Mainly due to the rapidly emerging field of genomics, it has now become obvious that not only myxobacteria but also many other groups of predatory bacteria share the potential for the biosynthesis of bioactive secondary metabolites. Recent studies indicate that a number of small molecules produced by predatory bacteria have functions in the process of predation beyond mere antibiosis. This chapter will summarize recent key findings in the field and provide a comprehensive overview on the biosynthetic capabilities of two model predators, namely Bdellovibrio bacteriovorus and Myxococcus xanthus.

Notes

Acknowledgments

The authors gratefully acknowledge the Bundesministerium für Bildung und Forschung (BMBF) for funding our research on predatory bacteria. Furthermore, we would like to thank our colleagues and coworkers at TU Dortmund University and at the Leibniz Institute for Natural Product Research and Infection Biology for their continued support.

References

  1. An JU, Kim BJ, Hong SH, Oh DK. Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid. Appl Microbiol Biotechnol. 2015;99:5487–97.PubMedGoogle Scholar
  2. An JU, Hong SH, Oh DK. Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:823–33.PubMedGoogle Scholar
  3. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108–60.PubMedPubMedCentralGoogle Scholar
  4. Balibar CJ, Vaillancourt FH, Walsh CT. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol. 2005;12:1189–200.PubMedGoogle Scholar
  5. Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol. 2017;44:573–88.PubMedGoogle Scholar
  6. Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev. 2009;33:942–57.PubMedPubMedCentralGoogle Scholar
  7. Bhat S, Ahrendt T, Dauth C, Bode HB, Shimkets LJ. Two lipid signals guide fruiting body development of Myxococcus xanthus. MBio. 2014;5:e00939–13.PubMedPubMedCentralGoogle Scholar
  8. Bode HB, Meiser P, Klefisch T, Cortina NS, Krug D, Gohring A, et al. Mutasynthesis-derived myxalamids and origin of the isobutyryl-CoA starter unit of myxalamid B. ChemBioChem. 2007;8:2139–44.Google Scholar
  9. Bonner DP, O’Sullivan J, Tanaka SK, Clark JM, Whitney RR. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot (Tokyo). 1988;41:1745–51.Google Scholar
  10. Braga D, Hoffmeister D, Nett M. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis. Beilstein J Org Chem. 2016;12:2766–70.PubMedPubMedCentralGoogle Scholar
  11. Burchard RP, Dworkin M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J Bacteriol. 1966;91:535–45.PubMedPubMedCentralGoogle Scholar
  12. Burgard C, Zaburannyi N, Nadmid S, Maier J, Jenke-Kodama H, Luxenburger E, Bernauer HS, Wenzel SC. Genomics-guided exploitation of lipopeptide diversity in myxobacteria. ACS Chem Biol. 2017;12:779–86.Google Scholar
  13. Bycroft BW, Payne DJ. Dictionary of antibiotics and related substances. 2nd ed. Boca Raton: CRC Press; 2013.Google Scholar
  14. Cain CC, Lee D, Waldo RH 3rd, Henry AT, Casida EJ Jr, Wani MC, et al. Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrob Agents Chemother. 2003;47:2113–7.PubMedPubMedCentralGoogle Scholar
  15. Calderone CT, Iwig DF, Dorrestein PC, Kelleher NL, Walsh CT. Incorporation of nonmethyl branches by isoprenoid-like logic: multiple beta-alkylation events in the biosynthesis of myxovirescin A1. Chem Biol. 2007;14:835–46.PubMedPubMedCentralGoogle Scholar
  16. Casida LE Jr. Minireview: nonobligate bacterial predation of bacteria in soil. Microb Ecol. 1988;15:1–8.PubMedGoogle Scholar
  17. Corbin JL, Bulen WA. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di-(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969;8:757–62.Google Scholar
  18. Cortina NS, Krug D, Plaza A, Revermann O, Muller R. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed. 2012;51:811–6.Google Scholar
  19. Davies J. Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol. 2006;33:496–9.PubMedGoogle Scholar
  20. Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.PubMedGoogle Scholar
  21. Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd ed. Chichester: Wiley; 2002.Google Scholar
  22. Dickschat JS, Wenzel SC, Bode HB, Muller R, Schulz S. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. ChemBioChem. 2004;5:778–87.Google Scholar
  23. Dickschat JS, Bode HB, Mahmud T, Muller R, Schulz S. A novel type of geosmin biosynthesis in myxobacteria. J Org Chem. 2005a;70:5174–82.Google Scholar
  24. Dickschat JS, Bode HB, Wenzel SC, Muller R, Schulz S. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. ChemBioChem. 2005b;6:2023–33.Google Scholar
  25. Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep. 2007;24:1073–109.PubMedGoogle Scholar
  26. Dworkin M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev. 1996;60:70–102.PubMedPubMedCentralGoogle Scholar
  27. Findlay BL. The chemical ecology of predatory soil bacteria. ACS Chem Biol. 2016;11:1502–10.PubMedGoogle Scholar
  28. Friedberg D. Effect of light on Bdellovibrio bacteriovorus. J Bacteriol. 1977;131:399–404.PubMedPubMedCentralGoogle Scholar
  29. Funa N, Ozawa H, Hirata A, Horinouchi S. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA. 2006;103:6356–61.PubMedGoogle Scholar
  30. Gaitatzis N, Kunze B, Muller R. In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Proc Natl Acad Sci USA. 2001;98:11136–41.PubMedGoogle Scholar
  31. Gaitatzis N, Kunze B, Muller R. Novel insights into siderophore formation in myxobacteria. ChemBioChem. 2005;6:365–74.Google Scholar
  32. Garcia R, Gerth K, Stadler M, Dogma IJ, Muller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol. 2010;57:878–87.Google Scholar
  33. Gerth K, Irschik H, Reichenbach H, Trowitzsch W. Antibiotics from gliding Bacteria .8. The Myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J Antibiot. 1982;35:1454–9.Google Scholar
  34. Gerth K, Jansen R, Reifenstahl G, Hofle G, Irschik H, Kunze B, et al. Antibiotics from gliding Bacteria .14. The Myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) .1. Production, physicochemical and biological properties, and mechanism of action. J Antibiot. 1983;36:1150–6.Google Scholar
  35. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen J, et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA. 2006;103:15200–5.PubMedGoogle Scholar
  36. Hansen J, Garreta A, Benincasa M, Fuste MC, Busquets M, Manresa A. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol. 2013;97:4737–47.PubMedGoogle Scholar
  37. Hayashi T, Kitamura Y, Funa N, Ohnishi Y, Horinouchi S. Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase. ChemBioChem. 2011;12:2166–76.Google Scholar
  38. Herrmann J, Fayad AA, Muller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep. 2017;34:135–60.PubMedGoogle Scholar
  39. Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed. 2009;48:4688–716.Google Scholar
  40. Hobley L, Lerner TR, Williams LE, Lambert C, Till R, Milner DS, et al. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the river Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics. 2012;13:670.PubMedPubMedCentralGoogle Scholar
  41. Hou J, Robbel L, Marahiell MA. Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. Chem Biol. 2011;18:655–64.Google Scholar
  42. Hug JJ, Panter F, Krug D, Muller R. Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria. J Ind Microbiol Biotechnol. 2019;46:319–34.PubMedGoogle Scholar
  43. Hyun H, Lee S, Lee JS, Cho K. Genetic and functional analyses of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J Microbiol Biotechnol. 2018;28:1068–77.PubMedGoogle Scholar
  44. Jansen R, Reifenstahl G, Gerth K, Reichenbach H, Höfle G. Antibiotika aus Gleitenden Bakterien, XV. Myaxalamide A, B, C und D eine Gruppe homologer Antibiotika aus Myxococcus xanthus Mx x12 (Myxobacterales). Liebigs Ann Chem. 1983;1983:1081–95.Google Scholar
  45. Jurkevitch E. Predatory behaviors in bacteria – diversity and transitions. Microbe. 2007;2:67–73.Google Scholar
  46. Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol. 2004;58:75–98.PubMedGoogle Scholar
  47. Kaiser D. Are Myxobacteria intelligent? Front Microbiol. 2013;4:335.PubMedPubMedCentralGoogle Scholar
  48. Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One. 2013;8:e61850.PubMedPubMedCentralGoogle Scholar
  49. Kearns DB, Venot A, Bonner PJ, Stevens B, Boons GJ, Shimkets LJ. Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc Natl Acad Sci USA. 2001;98:13990–4.PubMedGoogle Scholar
  50. Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95(T)). Stand Genomic Sci. 2011;5:356–70.PubMedPubMedCentralGoogle Scholar
  51. Koeduka T, Kajiwara T, Matsui K. Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Escherichia coli. Curr Microbiol. 2007;54:315–9.Google Scholar
  52. Korp J, Konig S, Schieferdecker S, Dahse HM, Konig GM, Werz O, Nett M. Harnessing enzymatic promiscuity in myxochelin biosynthesis for the production of 5-lipoxygenase inhibitors. ChemBioChem. 2015;16:2445–50.Google Scholar
  53. Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem. 2016;12:594–607.Google Scholar
  54. Korp J, Winand L, Sester A, Nett M. Engineering Pseudochelin production in Myxococcus xanthus. Appl Environ Microbiol. 2018;84:e01789-18.Google Scholar
  55. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Muller R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol. 2008;74:3058–68.Google Scholar
  56. Kuhn H, Thiele BJ. The diversity of the lipoxygenase family – many sequence data but little information on biological significance. FEBS Lett. 1999;449:7–11.Google Scholar
  57. Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta. 2015;1851:308–30.Google Scholar
  58. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.Google Scholar
  59. Kunze B, Bedorf N, Kohl W, Hofle G, Reichenbach H. Myxochelin A, a new Iron-chelating compound from Angiococcus disciformis (Myxobacterales) – production, isolation, physicochemical and biological properties. J Antibiot. 1989;42:14–7.Google Scholar
  60. Kuzuyama T. Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot. 2017;70:811–8.Google Scholar
  61. Lambert C, Chang CY, Capeness MJ, Sockett RE. The first bite - profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One. 2010;5:e8599.Google Scholar
  62. Li YY, Weissman KJ, Muller R. Myxochelin biosynthesis: direct evidence for two- and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc. 2008;130:7554.Google Scholar
  63. Livingstone PG, Millard AD, Swain MT, Whitworth DE. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding. Microb Genomics. 2018a;4Google Scholar
  64. Livingstone PG, Morphew RM, Cookson AR, Whitworth DE. Genome analysis, metabolic potential, and predatory capabilities of Herpetosiphon llansteffanense sp. nov. Appl Environ Microbiol. 2018b;84:e01040-18.Google Scholar
  65. Lorenzen W, Ring MW, Schwar G, Bode HB. Isoprenoids are essential for fruiting body formation in Myxococcus xanthus. J Bacteriol. 2009;191:5849–53.Google Scholar
  66. Lorenzen W, Ahrendt T, Bozhuyuk KAJ, Bode HB. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol. 2014;10:425–7.Google Scholar
  67. Martin MO. Predatory prokaryotes: An emerging research opportunity. J Mol Microb Biotechnol. 2002;4:467–77.Google Scholar
  68. Meers PR, Liu C, Chen R, Bartos W, Davis J, Dziedzic N, et al. Vesicular delivery of the antifungal antibiotics of Lysobacter enzymogenes C3. Appl Environ Microbiol. 2018;84:e01353-18.Google Scholar
  69. Meiser P, Bode HB, Muller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA. 2006;103:19128–33.Google Scholar
  70. Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, Muller R. DKxanthene biosynthesis--understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem Biol. 2008;15:771–81.Google Scholar
  71. Miyanaga S, Obata T, Onaka H, Fujita T, Saito N, Sakurai H, et al. Absolute configuration and antitumor activity of myxochelin A produced by Nonomuraea pusilla TP-A0861. J Antibiot. 2006;59:698–703.Google Scholar
  72. Mohseni MM, Hover T, Barra L, Kaiser M, Dorrestein PC, Dickschat JS, Schaberle TF. Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. Angew Chem Int Ed. 2016;55:13611–4.Google Scholar
  73. Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JA, Nilsen G, O’Hare T, Piel J, Shipley PR, Xiang L, Austin MB, Noel JP. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod. 2002;65:1956–62.Google Scholar
  74. Moreno AJ, Fontes M, Murillo FJ. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J Bacteriol. 2001;183:557–69.Google Scholar
  75. Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol. 2014;80:5603–10.Google Scholar
  76. Muller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl Environ Microbiol. 2015;81:203–10.Google Scholar
  77. Muller S, Strack SN, Ryan SE, Shawgo M, Walling A, Harris S, Chambers C, Boddicker J, Kirby JR. Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis. J Bacteriol. 2016;198:3335–44.Google Scholar
  78. Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:781.Google Scholar
  79. Nan B, Zusman DR. Uncovering the mystery of gliding motility in the Myxobacteria. Annu Rev Genet. 2011;45:21–39.Google Scholar
  80. Nett M. Genome mining: concept and strategies for natural product discovery. Prog Chem Org Nat Prod. 2014;99:199–245.Google Scholar
  81. Nett M, Konig GM. The chemistry of gliding bacteria. Nat Prod Rep. 2007;24:1245–61.Google Scholar
  82. Nett M, Erol O, Kehraus S, Kock M, Krick A, Eguereva E, Neu E, Konig GM. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew Chem Int Ed. 2006;45:3863–7.Google Scholar
  83. O’Sullivan J, McCullough JE, Tymiak AA, Kirsch DR, Trejo WH, Principe PA. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot (Tokyo). 1988;41:1740–4.Google Scholar
  84. Oliw EH. Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat. 2002;68-69:313–23.Google Scholar
  85. Oyedara OO, Segura-Cabrera A, Guo XW, Elufisan TO, Gonzalez RA, Perez MAR. Whole-genome sequencing and comparative genome analysis provided insight into the predatory features and genetic diversity of two Bdellovibrio species isolated from soil. Int J Genomics. 2018;2018:9402073.Google Scholar
  86. Paitan Y, Alon G, Orr E, Ron EZ, Rosenberg E. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J Mol Biol. 1999a;286:465–74.Google Scholar
  87. Paitan Y, Orr E, Ron EZ, Rosenberg E. A NusG-like transcription anti-terminator is involved in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus. FEMS Microbiol Lett. 1999b;170:221–7.Google Scholar
  88. Paitan Y, Orr E, Ron EZ, Rosenberg E. Cloning and characterization of a Myxococcus xanthus cytochrome P-450 hydroxylase required for biosynthesis of the polyketide antibiotic TA. Gene. 1999c;228:147–53.Google Scholar
  89. Paitan Y, Orr E, Ron EZ, Rosenberg E. A nonessential signal peptidase II (Lsp) of Myxococcus xanthus might be involved in biosynthesis of the polyketide antibiotic TA. J Bacteriol. 1999d;181:5644–51.Google Scholar
  90. Paitan Y, Orr E, Ron EZ, Rosenberg E. Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus. Microbiology. 1999e;145:3059–67.Google Scholar
  91. Paitan Y, Orr E, Ron EZ, Rosenberg E. An unusual beta-ketoacyl: acyl carrier protein synthase and acyltransferase motifs in TaK, a putative protein required for biosynthesis of the antibiotic TA in Myxococcus xanthus. FEMS Microbiol Lett. 2001;203:191–7.Google Scholar
  92. Pan HW, He XS, Lux R, Luan J, Shi WY. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact. Microb Ecol. 2013;66:630–8.Google Scholar
  93. Pan X, Domin N, Schieferdecker S, Kage H, Roth M, Nett M. Herpetopanone, a diterpene from Herpetosiphon aurantiacus discovered by isotope labeling. Beilstein J Org Chem. 2017;13:2458–65.Google Scholar
  94. Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol. 2016;198:839–45.PubMedGoogle Scholar
  95. Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 2013;7:756–69.PubMedGoogle Scholar
  96. Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, Koval S, Pietrokovski S, Gophna U, Jurkevitch E. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.Google Scholar
  97. Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep. 2010;27:996–1047.PubMedGoogle Scholar
  98. Plaga W, Stamm I, Schairer HU. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc Natl Acad Sci USA. 1998;95:11263–7.PubMedGoogle Scholar
  99. Porta H, Rocha-Sosa M. Lipoxygenase in bacteria: a horizontal transfer event? Microbiology. 2001;147:3199–200.PubMedGoogle Scholar
  100. Porta H, Rocha-Sosa M. Plant lipoxygenases. Physiological and molecular features. Plant Physiol. 2002;130:15–21.PubMedPubMedCentralGoogle Scholar
  101. Qian H, Xia B, He Y, Lu Z, Bie X, Zhao H, Zhang C, Lu F. Expression, purification, and characterization of a novel acidic lipoxygenase from Myxococcus xanthus. Protein Expr Purif. 2017;138:13–7.Google Scholar
  102. Raju R, Mohr KI, Bernecker S, Herrmann J, Muller R. Cystodienoic acid: a new diterpene isolated from the myxobacterium Cystobacter sp. J Antibiot (Tokyo). 2015;68:473–5.Google Scholar
  103. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.Google Scholar
  104. Reusch RN, Sadoff HL. Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature. 1983;302:268–70.PubMedGoogle Scholar
  105. Revermann O. Novel secondary metabolites from myxobacteria and their biosynthetic machinery. PhD thesis, Universität des Saarlandes. 2012.Google Scholar
  106. Rosenberg E, Dworkin M. Autocides and a paracide, antibiotic TA, produced by Myxococcus xanthus. J Ind Microbiol Biotechnol. 1996;17:424–31.Google Scholar
  107. Rosenberg E, Varon M. Antibiotics and lytic enzymes. In: Rosenberg E, editor. Myxobacteria. Development and cell interactions. New York: Springer; 1984. p. 109–25.Google Scholar
  108. Rosenberg E, Vaks B, Zuckerberg A. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob Agents Chemother. 1973;4:507–13.Google Scholar
  109. Rosenberg E, Fytlovitch S, Carmeli S, Kashman Y. Chemical properties of Myxococcus xanthus antibiotic TA. J Antibiot. 1982;35:788–93.Google Scholar
  110. Schieferdecker S, Konig S, Weigel C, Dahse HM, Werz O, Nett M. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chem Eur J. 2014;20:15933–40.Google Scholar
  111. Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M, Nett M. Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur J Org Chem. 2015a:3057–62.Google Scholar
  112. Schieferdecker S, Konig S, Koeberle A, Dahse HM, Werz O, Nett M. Myxochelins target human 5-lipoxygenase. J Nat Prod. 2015b;78:335–8.Google Scholar
  113. Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation. Appl Environ Microbiol. 2015;81:7098–105.Google Scholar
  114. Sester A, Winand L, Pace S, Hiller W, Werz O, Nett M. Myxochelin- and pseudochelin-derived lipoxygenase inhibitors from a genetically engineered Myxococcus xanthus strain. J Nat Prod. 2019;82:2544–9.Google Scholar
  115. Shimizu Y, Ogata H, Goto S. Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem. 2017;18:50–65.Google Scholar
  116. Shimkets LJ. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990;54:473–501.Google Scholar
  117. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539.Google Scholar
  118. Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem. 2000;267:6476–85.Google Scholar
  119. Simunovic V, Muller R. 3-hydroxy-3-methylglutaryl-CoA-like synthases direct the formation of methyl and ethyl side groups in the biosynthesis of the antibiotic myxovirescin A. ChemBioChem. 2007a;8:497–500.Google Scholar
  120. Simunovic V, Muller R. Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones. ChemBioChem. 2007b;8:1273–80.Google Scholar
  121. Simunovic V, Zapp J, Rachid S, Krug D, Meiser P, Muller R. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem. 2006;7:1206–20.Google Scholar
  122. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol. 2009;63:523–39.PubMedGoogle Scholar
  123. Sonnenschein EC, Stierhof M, Goralczyk S, Vabre FM, Pellissier L, Hanssen KO, et al. Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron. 2017;73:2633–7.Google Scholar
  124. Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Muller R. Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed. 2014;53:13588–91.Google Scholar
  125. Sussmuth RD, Mainz A. Nonribosomal peptide synthesis - principles and prospects. Angew Chem Int Ed. 2017;56:3770–821.Google Scholar
  126. Sutcliffe IC, Harrington DJ, Hutchings MI. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell. 2012;3:163–70.PubMedPubMedCentralGoogle Scholar
  127. Trowitzsch W, Wray V, Gerth K, Hofle G. Structure of myxovirescin A, a new macrocyclic antibiotic from gliding bacteria. J Chem Soc Chem Comm. 1982:1340–2.Google Scholar
  128. Trowitzsch-Kienast K, Gerth K, Wray V, Reichenbach H, Höfle G. Myxochromid A: Ein hochungesättigtes Lipopeptidlacton aus Myxococcus virescens. Liebigs Ann Chem. 1993;1993:1233–7.Google Scholar
  129. Vaks B, Zuckerberg A, Rosenberg E. Purification and partial characterization of an antibiotic produced by Myxococcus xanthus. Can J Microbiol. 1974;20:155–61.PubMedGoogle Scholar
  130. Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA. 2004;101:2135–9.PubMedGoogle Scholar
  131. Varon M, Fuchs N, Monosov M, Tolchinsky S, Rosenberg E. Mutation and mapping of genes involved in production of the antibiotic TA in Myxococcus xanthus. Antimicrob Agents Chemother. 1992;36:2316–21.PubMedPubMedCentralGoogle Scholar
  132. Velicer GJ, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.PubMedGoogle Scholar
  133. Weissman KJ. The structural biology of biosynthetic megaenzymes. Nat Chem Biol. 2015;11:660–70.PubMedGoogle Scholar
  134. Wenzel SC, Meiser P, Binz TM, Mahmud T, Muller R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Ed. 2006;45:2296–301.Google Scholar
  135. Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. PLoS One. 2010;5:e15628.Google Scholar
  136. Xiao Y, Wall D. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. J Bacteriol. 2014;196:1174–83.PubMedPubMedCentralGoogle Scholar
  137. Xiao Y, Wei XM, Ebright R, Wall D. Antibiotic production by Myxobacteria plays a role in predation. J Bacteriol. 2011;193:4626–33.PubMedPubMedCentralGoogle Scholar
  138. Xiao Y, Gerth K, Muller R, Wall D. Myxobacterium-produced antibiotic TA (Myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother. 2012;56:2014–21.Google Scholar
  139. Zafriri D, Rosenberg E, Mirelman D. Mode of action of Myxococcus xanthus antibiotic TA. Antimicrob Agents Chemother. 1981;19:349–51.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratory of Technical Biology, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations