Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells

  • Samuel K. Powell
  • Callan P. O’Shea
  • Sara Rose Shannon
  • Schahram Akbarian
  • Kristen J. BrennandEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 25)


Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.


Human induced pluripotent stem cells CRISPR genome engineering Psychiatric genomics Schizophrenia Disease modeling 


  1. 1.
    Carpenter Jr., W. T., Strauss, J. S., & Bartko, J. J. (1974). An approach to the diagnosis and understanding of schizophrenia. Introduction. Schizophrenia Bulletin (11), 35–36.
  2. 2.
    Crow, T. J. (1985). The two-syndrome concept: origins and current status. Schizophrenia Bulletin, 11(3), 471–486.PubMedGoogle Scholar
  3. 3.
    Sartorius, N., Shapiro, R., Kimura, M., & Barrett, K. (1972). WHO international pilot study of schizophrenia. Psychological Medicine, 2(4), 422–425.PubMedGoogle Scholar
  4. 4.
    Strauss, J. S., Carpenter Jr., W. T., & Bartko, J. J. (1974). The diagnosis and understanding of schizophrenia. Summary and conclusions. Schizophrenia Bulletin (11), 70–80.Google Scholar
  5. 5.
    Kay, S. R., Opler, L. A., & Lindenmayer, J. P. (1988). Reliability and validity of the positive and negative syndrome scale for schizophrenics. Psychiatry Research, 23(1), 99–110.PubMedGoogle Scholar
  6. 6.
    Lindenmayer, J. P., Bernstein-Hyman, R., & Grochowski, S. (1994). A new five factor model of schizophrenia. Psychiatric Quarterly, 65(4), 299–322.PubMedGoogle Scholar
  7. 7.
    Wallwork, R. S., Fortgang, R., Hashimoto, R., Weinberger, D. R., & Dickinson, D. (2012). Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophrenia Research, 137(1–3), 246–250. Scholar
  8. 8.
    American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
  9. 9.
    Staehelin, J. E., & Kielholz, P. (1953). Largactil, a new vegetative damping agent in mental disorders. Schweizerische Medizinische Wochenschrift, 83(25), 581–586.PubMedGoogle Scholar
  10. 10.
    Carlsson, A., & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica, 20, 140–144.PubMedGoogle Scholar
  11. 11.
    Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481–483.PubMedGoogle Scholar
  12. 12.
    Seeman, P., & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science, 188(4194), 1217–1219.PubMedGoogle Scholar
  13. 13.
    Borison, R. L., Pathiraja, A. P., Diamond, B. I., & Meibach, R. C. (1992). Risperidone: clinical safety and efficacy in schizophrenia. Psychopharmacology Bulletin, 28(2), 213–218.PubMedGoogle Scholar
  14. 14.
    Jones, P. B., Barnes, T. R., Davies, L., Dunn, G., Lloyd, H., Hayhurst, K. P., et al. (2006). Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Archives of General Psychiatry, 63(10), 1079–1087. Scholar
  15. 15.
    Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353(12), 1209–1223. Scholar
  16. 16.
    Kane, J., Honigfeld, G., Singer, J., & Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45(9), 789–796.PubMedGoogle Scholar
  17. 17.
    Fusar-Poli, P., Papanastasiou, E., Stahl, D., Rocchetti, M., Carpenter, W., Shergill, S., et al. (2015). Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophrenia Bulletin, 41(4), 892–899. Scholar
  18. 18.
    Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Orey, D., Richter, F., et al. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet, 382(9896), 951–962. Scholar
  19. 19.
    Naber, D., & Lambert, M. (2009). The CATIE and CUtLASS studies in schizophrenia: results and implications for clinicians. CNS Drugs, 23(8), 649–659. Scholar
  20. 20.
    Downing, A. M., Kinon, B. J., Millen, B. A., Zhang, L., Liu, L., Morozova, M. A., et al. (2014). A double-blind, placebo-controlled comparator study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry, 14, 351. Scholar
  21. 21.
    Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J. E., et al. (1992). Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychological Medicine. Monograph Supplement, 20, 1–97.PubMedGoogle Scholar
  22. 22.
    Hjorthoj, C., Sturup, A. E., McGrath, J. J., & Nordentoft, M. (2017). Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry, 4(4), 295–301. Scholar
  23. 23.
    Palmer, B. A., Pankratz, V. S., & Bostwick, J. M. (2005). The lifetime risk of suicide in schizophrenia: a reexamination. Archives of General Psychiatry, 62(3), 247–253. Scholar
  24. 24.
    Caldwell, C. B., & Gottesman, I. I. (1990). Schizophrenics kill themselves too: a review of risk factors for suicide. Schizophrenia Bulletin, 16(4), 571–589.PubMedGoogle Scholar
  25. 25.
    Phillips, M. R., Yang, G., Li, S., & Li, Y. (2004). Suicide and the unique prevalence pattern of schizophrenia in mainland China: a retrospective observational study. Lancet, 364(9439), 1062–1068. Scholar
  26. 26.
    Brown, S. (1997). Excess mortality of schizophrenia. A meta-analysis. The British Journal of Psychiatry, 171, 502–508.PubMedGoogle Scholar
  27. 27.
    Weinmann, S., Read, J., & Aderhold, V. (2009). Influence of antipsychotics on mortality in schizophrenia: systematic review. Schizophrenia Research, 113(1), 1–11. Scholar
  28. 28.
    Nielsen, P. R., Laursen, T. M., & Agerbo, E. (2016). Comorbidity of schizophrenia and infection: a population-based cohort study. Social Psychiatry and Psychiatric Epidemiology, 51(12), 1581–1589. Scholar
  29. 29.
    Goff, D. C., Cather, C., Evins, A. E., Henderson, D. C., Freudenreich, O., Copeland, P. M., et al. (2005). Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. Journal of Clinical Psychiatry, 66(2), 183–194; quiz 147, 273-184.PubMedGoogle Scholar
  30. 30.
    Winklbaur, B., Ebner, N., Sachs, G., Thau, K., & Fischer, G. (2006). Substance abuse in patients with schizophrenia. Dialogues in Clinical Neuroscience, 8(1), 37–43.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Brekke, J. S., Prindle, C., Bae, S. W., & Long, J. D. (2001). Risks for individuals with schizophrenia who are living in the community. Psychiatric Services, 52(10), 1358–1366. Scholar
  32. 32.
    Rapoport, J. L., Addington, A. M., Frangou, S., & Psych, M. R. (2005). The neurodevelopmental model of schizophrenia: update 2005. Molecular Psychiatry, 10(5), 434–449. Scholar
  33. 33.
    Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Molecular Psychiatry, 17(12), 1228–1238. Scholar
  34. 34.
    Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348. Scholar
  35. 35.
    Muraki, K., & Tanigaki, K. (2015). Neuronal migration abnormalities and its possible implications for schizophrenia. Frontiers in Neuroscience, 9, 74. Scholar
  36. 36.
    Schoenfeld, T. J., & Cameron, H. A. (2015). Adult neurogenesis and mental illness. Neuropsychopharmacology, 40(1), 113–128. Scholar
  37. 37.
    Schmidt, M. J., & Mirnics, K. (2015). Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology, 40(1), 190–206. Scholar
  38. 38.
    Bartzokis, G. (2002). Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology, 27(4), 672–683. Scholar
  39. 39.
    Forsyth, J. K., & Lewis, D. A. (2017). Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: an integrative model for diverse clinical features. Trends in Cognitive Sciences, 21(10), 760–778. Scholar
  40. 40.
    Hirayasu, Y., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Fischer, I. A., Mazzoni, P., et al. (1998). Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. The American Journal of Psychiatry, 155(10), 1384–1391. Scholar
  41. 41.
    Wilke, M., Kaufmann, C., Grabner, A., Putz, B., Wetter, T. C., & Auer, D. P. (2001). Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. NeuroImage, 13(5), 814–824. Scholar
  42. 42.
    Salgado-Pineda, P., Baeza, I., Perez-Gomez, M., Vendrell, P., Junque, C., Bargallo, N., et al. (2003). Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. NeuroImage, 19(2 Pt 1), 365–375.PubMedGoogle Scholar
  43. 43.
    Berge, D., Carmona, S., Rovira, M., Bulbena, A., Salgado, P., & Vilarroya, O. (2011). Gray matter volume deficits and correlation with insight and negative symptoms in first-psychotic-episode subjects. Acta Psychiatrica Scandinavica, 123(6), 431–439. Scholar
  44. 44.
    Hirayasu, Y., Tanaka, S., Shenton, M. E., Salisbury, D. F., DeSantis, M. A., Levitt, J. J., et al. (2001). Prefrontal gray matter volume reduction in first episode schizophrenia. Cerebral Cortex, 11(4), 374–381.PubMedGoogle Scholar
  45. 45.
    Paillere-Martinot, M., Caclin, A., Artiges, E., Poline, J. B., Joliot, M., Mallet, L., et al. (2001). Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophrenia Research, 50(1–2), 19–26.PubMedGoogle Scholar
  46. 46.
    Crespo-Facorro, B., Roiz-Santianez, R., Perez-Iglesias, R., Rodriguez-Sanchez, J. M., Mata, I., Tordesillas-Gutierrez, D., et al. (2011). Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychological Medicine, 41(7), 1449–1460. Scholar
  47. 47.
    Whitford, T. J., Grieve, S. M., Farrow, T. F., Gomes, L., Brennan, J., Harris, A. W., et al. (2006). Progressive grey matter atrophy over the first 2–3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. NeuroImage, 32(2), 511–519. Scholar
  48. 48.
    Hirayasu, Y., Shenton, M. E., Salisbury, D. F., Kwon, J. S., Wible, C. G., Fischer, I. A., et al. (1999). Subgenual cingulate cortex volume in first-episode psychosis. The American Journal of Psychiatry, 156(7), 1091–1093. Scholar
  49. 49.
    Kasai, K., Shenton, M. E., Salisbury, D. F., Onitsuka, T., Toner, S. K., Yurgelun-Todd, D., et al. (2003). Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Archives of General Psychiatry, 60(11), 1069–1077. Scholar
  50. 50.
    Rothlisberger, M., Riecher-Rossler, A., Aston, J., Fusar-Poli, P., Radu, E. W., & Borgwardt, S. (2012). Cingulate volume abnormalities in emerging psychosis. Current Pharmaceutical Design, 18(4), 495–504.PubMedGoogle Scholar
  51. 51.
    Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N. I., & Calhoun, V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30(1), 241–255. Scholar
  52. 52.
    Carpenter, D. M., Tang, C. Y., Friedman, J. I., Hof, P. R., Stewart, D. G., Buchsbaum, M. S., et al. (2008). Temporal characteristics of tract-specific anisotropy abnormalities in schizophrenia. Neuroreport, 19(14), 1369–1372. Scholar
  53. 53.
    Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518. Scholar
  54. 54.
    Perez-Iglesias, R., Tordesillas-Gutierrez, D., Barker, G. J., McGuire, P. K., Roiz-Santianez, R., Mata, I., et al. (2010). White matter defects in first episode psychosis patients: a voxelwise analysis of diffusion tensor imaging. NeuroImage, 49(1), 199–204. Scholar
  55. 55.
    Ruef, A., Curtis, L., Moy, G., Bessero, S., Badan Ba, M., Lazeyras, F., et al. (2012). Magnetic resonance imaging correlates of first-episode psychosis in young adult male patients: combined analysis of grey and white matter. Journal of Psychiatry & Neuroscience, 37(5), 305–312. Scholar
  56. 56.
    White, T., Anjum, A., & Schulz, S. C. (2006). The schizophrenia prodrome. The American Journal of Psychiatry, 163(3), 376–380. Scholar
  57. 57.
    Yung, A. R., & McGorry, P. D. (1996a). The initial prodrome in psychosis: descriptive and qualitative aspects. The Australian and New Zealand Journal of Psychiatry, 30(5), 587–599. Scholar
  58. 58.
    Beiser, M., Erickson, D., Fleming, J. A., & Iacono, W. G. (1993). Establishing the onset of psychotic illness. The American Journal of Psychiatry, 150(9), 1349–1354. Scholar
  59. 59.
    Lencz, T., Cornblatt, B., & Bilder, R. M. (2001). Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacology Bulletin, 35(1), 95–125.PubMedGoogle Scholar
  60. 60.
    Tsuang, M. T., Faraone, S. V., Bingham, S., Young, K., Prabhudesai, S., Haverstock, S. L., et al. (2000). Department of Veterans Affairs Cooperative Studies Program genetic linkage study of schizophrenia: ascertainment methods and sample description. American Journal of Medical Genetics, 96(3), 342–347.PubMedGoogle Scholar
  61. 61.
    Yung, A. R., & McGorry, P. D. (1996b). The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophrenia Bulletin, 22(2), 353–370.PubMedGoogle Scholar
  62. 62.
    Cornblatt, B., Lencz, T., & Obuchowski, M. (2002). The schizophrenia prodrome: treatment and high-risk perspectives. Schizophrenia Research, 54(1–2), 177–186.PubMedGoogle Scholar
  63. 63.
    Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11(3), 487–508.PubMedGoogle Scholar
  64. 64.
    Lappin, J. M., Dazzan, P., Morgan, K., Morgan, C., Chitnis, X., Suckling, J., et al. (2007). Duration of prodromal phase and severity of volumetric abnormalities in first-episode psychosis. The British Journal of Psychiatry. Supplement, 51, s123–s127. Scholar
  65. 65.
    Fusar-Poli, P., Tantardini, M., De Simone, S., Ramella-Cravaro, V., Oliver, D., Kingdon, J., et al. (2017). Deconstructing vulnerability for psychosis: meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. European Psychiatry, 40, 65–75. Scholar
  66. 66.
    Clarke, M. C., Tanskanen, A., Huttunen, M., Leon, D. A., Murray, R. M., Jones, P. B., et al. (2011). Increased risk of schizophrenia from additive interaction between infant motor developmental delay and obstetric complications: evidence from a population-based longitudinal study. The American Journal of Psychiatry, 168(12), 1295–1302. Scholar
  67. 67.
    Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344(8934), 1398–1402.PubMedGoogle Scholar
  68. 68.
    Kremen, W. S., Buka, S. L., Seidman, L. J., Goldstein, J. M., Koren, D., & Tsuang, M. T. (1998). IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. The American Journal of Psychiatry, 155(5), 672–677. Scholar
  69. 69.
    Wood, S. J., Pantelis, C., Proffitt, T., Phillips, L. J., Stuart, G. W., Buchanan, J. A., et al. (2003). Spatial working memory ability is a marker of risk-for-psychosis. Psychological Medicine, 33(7), 1239–1247.PubMedGoogle Scholar
  70. 70.
    Brewer, W. J., Francey, S. M., Wood, S. J., Jackson, H. J., Pantelis, C., Phillips, L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. The American Journal of Psychiatry, 162(1), 71–78. Scholar
  71. 71.
    Dickson, H., Laurens, K. R., Cullen, A. E., & Hodgins, S. (2012). Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42(4), 743–755. Scholar
  72. 72.
    Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York High-Risk Project. The American Journal of Psychiatry, 157(9), 1416–1422. Scholar
  73. 73.
    Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. BMJ, 309(6956), 699–703.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Davidson, M., Reichenberg, A., Rabinowitz, J., Weiser, M., Kaplan, Z., & Mark, M. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. The American Journal of Psychiatry, 156(9), 1328–1335. Scholar
  75. 75.
    Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164.PubMedGoogle Scholar
  76. 76.
    Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–288. Scholar
  77. 77.
    Borgwardt, S. J., McGuire, P. K., Aston, J., Berger, G., Dazzan, P., Gschwandtner, U., et al. (2007). Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. The British Journal of Psychiatry. Supplement, 51, s69–s75. Scholar
  78. 78.
    Fornito, A., Yung, A. R., Wood, S. J., Phillips, L. J., Nelson, B., Cotton, S., et al. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry, 64(9), 758–765. Scholar
  79. 79.
    Takahashi, T., Wood, S. J., Soulsby, B., Kawasaki, Y., McGorry, P. D., Suzuki, M., et al. (2009a). An MRI study of the superior temporal subregions in first-episode patients with various psychotic disorders. Schizophrenia Research, 113(2–3), 158–166. Scholar
  80. 80.
    Takahashi, T., Wood, S. J., Yung, A. R., Phillips, L. J., Soulsby, B., McGorry, P. D., et al. (2009b). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research, 111(1–3), 94–102. Scholar
  81. 81.
    Mechelli, A., Riecher-Rossler, A., Meisenzahl, E. M., Tognin, S., Wood, S. J., Borgwardt, S. J., et al. (2011). Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Archives of General Psychiatry, 68(5), 489–495. Scholar
  82. 82.
    Fusar-Poli, P., Broome, M. R., Woolley, J. B., Johns, L. C., Tabraham, P., Bramon, E., et al. (2011). Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: longitudinal VBM-fMRI study. Journal of Psychiatric Research, 45(2), 190–198. Scholar
  83. 83.
    Jung, W. H., Kim, J. S., Jang, J. H., Choi, J. S., Jung, M. H., Park, J. Y., et al. (2011). Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophrenia Bulletin, 37(4), 839–849. Scholar
  84. 84.
    Gilmore, J. H., Kang, C., Evans, D. D., Wolfe, H. M., Smith, J. K., Lieberman, J. A., et al. (2010a). Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. The American Journal of Psychiatry, 167(9), 1083–1091. Scholar
  85. 85.
    Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., et al. (2010b). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 31(8), 1174–1182. Scholar
  86. 86.
    Walterfang, M., McGuire, P. K., Yung, A. R., Phillips, L. J., Velakoulis, D., Wood, S. J., et al. (2008). White matter volume changes in people who develop psychosis. The British Journal of Psychiatry, 193(3), 210–215. Scholar
  87. 87.
    Bloemen, O. J., de Koning, M. B., Schmitz, N., Nieman, D. H., Becker, H. E., de Haan, L., et al. (2010). White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychological Medicine, 40(8), 1297–1304. Scholar
  88. 88.
    Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32(2), 200–202. Scholar
  89. 89.
    Brown, A. S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Developmental Neurobiology, 72(10), 1272–1276. Scholar
  90. 90.
    Cannon, M., Jones, P. B., & Murray, R. M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. The American Journal of Psychiatry, 159(7), 1080–1092. Scholar
  91. 91.
    Picker, J. D., & Coyle, J. T. (2005). Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harvard Review of Psychiatry, 13(4), 197–205. Scholar
  92. 92.
    Roseboom, T. J., Painter, R. C., van Abeelen, A. F., Veenendaal, M. V., & de Rooij, S. R. (2011). Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas, 70(2), 141–145. Scholar
  93. 93.
    Knud Larsen, J., Bendsen, B. B., Foldager, L., & Munk-Jorgensen, P. (2010). Prematurity and low birth weight as risk factors for the development of affective disorder, especially depression and schizophrenia: a register study. Acta Neuropsychiatrica, 22(6), 284–291. Scholar
  94. 94.
    Rifkin, L., Lewis, S., Jones, P., Toone, B., & Murray, R. (1994). Low birth weight and schizophrenia. The British Journal of Psychiatry, 165(3), 357–362.PubMedGoogle Scholar
  95. 95.
    Wahlbeck, K., Forsen, T., Osmond, C., Barker, D. J., & Eriksson, J. G. (2001). Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Archives of General Psychiatry, 58(1), 48–52.PubMedGoogle Scholar
  96. 96.
    Torniainen, M., Wegelius, A., Tuulio-Henriksson, A., Lonnqvist, J., & Suvisaari, J. (2013). Both low birthweight and high birthweight are associated with cognitive impairment in persons with schizophrenia and their first-degree relatives. Psychological Medicine, 43(11), 2361–2367. Scholar
  97. 97.
    Moilanen, K., Jokelainen, J., Jones, P. B., Hartikainen, A. L., Jarvelin, M. R., & Isohanni, M. (2010). Deviant intrauterine growth and risk of schizophrenia: a 34-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophrenia Research, 124(1–3), 223–230. Scholar
  98. 98.
    Davies, G., Welham, J., Chant, D., Torrey, E. F., & McGrath, J. (2003). A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophrenia Bulletin, 29(3), 587–593.PubMedGoogle Scholar
  99. 99.
    Frissen, A., Lieverse, R., Drukker, M., van Winkel, R., Delespaul, P., & Investigators, G. (2015). Childhood trauma and childhood urbanicity in relation to psychotic disorder. Social Psychiatry and Psychiatric Epidemiology, 50(10), 1481–1488. Scholar
  100. 100.
    Lataster, J., Myin-Germeys, I., Lieb, R., Wittchen, H. U., & van Os, J. (2012). Adversity and psychosis: a 10-year prospective study investigating synergism between early and recent adversity in psychosis. Acta Psychiatrica Scandinavica, 125(5), 388–399. Scholar
  101. 101.
    Marconi, A., Di Forti, M., Lewis, C. M., Murray, R. M., & Vassos, E. (2016). Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophrenia Bulletin, 42(5), 1262–1269. Scholar
  102. 102.
    Moore, T. H., Zammit, S., Lingford-Hughes, A., Barnes, T. R., Jones, P. B., Burke, M., et al. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet, 370(9584), 319–328. Scholar
  103. 103.
    Heinz, A., Deserno, L., & Reininghaus, U. (2013). Urbanicity, social adversity and psychosis. World Psychiatry, 12(3), 187–197. Scholar
  104. 104.
    Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 373(9659), 234–239. Scholar
  105. 105.
    Lichtenstein, P., Bjork, C., Hultman, C. M., Scolnick, E., Sklar, P., & Sullivan, P. F. (2006). Recurrence risks for schizophrenia in a Swedish national cohort. Psychological Medicine, 36(10), 1417–1425. Scholar
  106. 106.
    Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics, 97(1), 12–17.PubMedGoogle Scholar
  107. 107.
    Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., et al. (2018). Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register. Biological Psychiatry, 83(6), 492–498. Scholar
  108. 108.
    Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Borglum, A. D., Breen, G., et al. (2018). Psychiatric genomics: an update and an agenda. The American Journal of Psychiatry, 175(1), 15–27. Scholar
  109. 109.
    Power, R. A., Kyaga, S., Uher, R., MacCabe, J. H., Langstrom, N., Landen, M., et al. (2013). Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry, 70(1), 22–30. Scholar
  110. 110.
    Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. The American Journal of Psychiatry, 168(3), 253–256. Scholar
  111. 111.
    Malaspina, D., Brown, A., Goetz, D., Alia-Klein, N., Harkavy-Friedman, J., Harlap, S., et al. (2002). Schizophrenia risk and paternal age: a potential role for de novo mutations in schizophrenia vulnerability genes. CNS Spectrums, 7(1), 26–29.PubMedGoogle Scholar
  112. 112.
    Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., et al. (2012). Rate of de novo mutations and the importance of father's age to disease risk. Nature, 488(7412), 471–475. Scholar
  113. 113.
    Gulsuner, S., Walsh, T., Watts, A. C., Lee, M. K., Thornton, A. M., Casadei, S., et al. (2013). Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell, 154(3), 518–529. Scholar
  114. 114.
    Xu, B., Ionita-Laza, I., Roos, J. L., Boone, B., Woodrick, S., Sun, Y., et al. (2012). De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nature Genetics, 44(12), 1365–1369. Scholar
  115. 115.
    Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature, 506(7487), 179–184. Scholar
  116. 116.
    Awadalla, P., Gauthier, J., Myers, R. A., Casals, F., Hamdan, F. F., Griffing, A. R., et al. (2010). Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. American Journal of Human Genetics, 87(3), 316–324. Scholar
  117. 117.
    Girard, S. L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., et al. (2011). Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 43(9), 860–863. Scholar
  118. 118.
    Purcell, S. M., Moran, J. L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., et al. (2014). A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506(7487), 185–190. Scholar
  119. 119.
    Genovese, G., Fromer, M., Stahl, E. A., Ruderfer, D. M., Chambert, K., Landen, M., et al. (2016). Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience, 19(11), 1433–1441. Scholar
  120. 120.
    Genovese G., Fromer M., Stahl E. A., Ruderfer D. M., Chambert K., Landén M., et al. (2016) Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience 19(11):1433–1441Google Scholar
  121. 121.
    Szatkiewicz, J. P., O'Dushlaine, C., Chen, G., Chambert, K., Moran, J. L., Neale, B. M., et al. (2014). Copy number variation in schizophrenia in Sweden. Molecular Psychiatry, 19(7), 762–773. Scholar
  122. 122.
    Rees, E., Kirov, G., O'Donovan, M. C., & Owen, M. J. (2012). De novo mutation in schizophrenia. Schizophrenia Bulletin, 38(3), 377–381. Scholar
  123. 123.
    Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. S., et al. (2017). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49(1), 27–35. Scholar
  124. 124.
    Schneider, M., Debbane, M., Bassett, A. S., Chow, E. W., Fung, W. L., van den Bree, M., et al. (2014). Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 deletion syndrome. The American Journal of Psychiatry, 171(6), 627–639. Scholar
  125. 125.
    Van, L., Boot, E., & Bassett, A. S. (2017). Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia. Current Opinion in Psychiatry, 30(3), 191–196. Scholar
  126. 126.
    Bergen, S. E., Ploner, A., Howrigan, D., CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium, O’Donovan, M. C., Smoller, J. W., et al. (2018). Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. Am J Psychiatry, 176, 29. Scholar
  127. 127.
    Tansey, K. E., Rees, E., Linden, D. E., Ripke, S., Chambert, K. D., Moran, J. L., et al. (2016). Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry, 21(8), 1153. Scholar
  128. 128.
    Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 58(1), 199–205.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe'er, I., et al. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460(7256), 753–757. Scholar
  130. 130.
    International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752. Scholar
  131. 131.
    O'Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40(9), 1053–1055. Scholar
  132. 132.
    Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460(7256), 744–747. Scholar
  133. 133.
    Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–976. Scholar
  134. 134.
    Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J. L., Kahler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45(10), 1150–1159. Scholar
  135. 135.
    Schmitt, A., Malchow, B., Hasan, A., & Falkai, P. (2014). The impact of environmental factors in severe psychiatric disorders. Frontiers in Neuroscience, 8, 19. Scholar
  136. 136.
    Pardinas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., et al. (2018). Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 50(3), 381–389. Scholar
  137. 137.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. Scholar
  138. 138.
    Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., et al. (2017). Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 49(11), 1576–1583. Scholar
  139. 139.
    Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., et al. (2011). Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics, 43(12), 1224–1227. Scholar
  140. 140.
    GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, et al. (2017). Genetic effects on gene expression across human tissues. Nature, 550(7675), 204–213. Scholar
  141. 141.
    Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337(6099), 1190–1195. Scholar
  142. 142.
    Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16(4), 197–212. Scholar
  143. 143.
    Ng, B., White, C. C., Klein, H. U., Sieberts, S. K., McCabe, C., Patrick, E., et al. (2017). An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nature Neuroscience, 20(10), 1418–1426. Scholar
  144. 144.
    Gandal, M. J., Zhang, P., Hadjimichael, E., Walker, R. L., Chen, C., Liu, S., et al. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 362(6420).
  145. 145.
    Rajarajan, P., Gil, S. E., Brennand, K. J., & Akbarian, S. (2016). Spatial genome organization and cognition. Nature Reviews Neuroscience, 17(11), 681–691. Scholar
  146. 146.
    Richards, A. L., Jones, L., Moskvina, V., Kirov, G., Gejman, P. V., Levinson, D. F., et al. (2012). Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Molecular Psychiatry, 17(2), 193–201. Scholar
  147. 147.
    Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal, T. M., et al. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 19(11), 1442–1453. Scholar
  148. 148.
    de la Torre-Ubieta, L., Stein, J. L., Won, H., Opland, C. K., Liang, D., Lu, D., et al. (2018). The dynamic landscape of open chromatin during human cortical neurogenesis. Cell2, 172(1–2), 289–304, e218. Scholar
  149. 149.
    Jaffe, A. E., Straub, R. E., Shin, J. H., Tao, R., Gao, Y., Collado-Torres, L., et al. (2018). Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 21(8), 1117–1125. Scholar
  150. 150.
    Zhang, Y. E., Landback, P., Vibranovski, M. D., & Long, M. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biology, 9(10), e1001179. Scholar
  151. 151.
    Akbarian, S., Bunney Jr., W. E., Potkin, S. G., Wigal, S. B., Hagman, J. O., Sandman, C. A., et al. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50(3), 169–177.PubMedGoogle Scholar
  152. 152.
    Jakob, H., & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65(3–4), 303–326.PubMedGoogle Scholar
  153. 153.
    Fung, S. J., Webster, M. J., Sivagnanasundaram, S., Duncan, C., Elashoff, M., & Weickert, C. S. (2010). Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. The American Journal of Psychiatry, 167(12), 1479–1488. Scholar
  154. 154.
    Hyde, T. M., Lipska, B. K., Ali, T., Mathew, S. V., Law, A. J., Metitiri, O. E., et al. (2011). Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. The Journal of Neuroscience, 31(30), 11088–11095. Scholar
  155. 155.
    Horváth S., Janka Z., Mirnics K., (2011) Analyzing Schizophrenia by DNA Microarrays. Biological Psychiatry 69(2):157–162Google Scholar
  156. 156.
    Torkamani, A., Dean, B., Schork, N. J., & Thomas, E. A. (2010). Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Research, 20(4), 403–412. Scholar
  157. 157.
    Mistry, M., Gillis, J., & Pavlidis, P. (2013a). Genome-wide expression profiling of schizophrenia using a large combined cohort. Molecular Psychiatry, 18(2), 215–225. Scholar
  158. 158.
    Mistry, M., Gillis, J., & Pavlidis, P. (2013b). Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC Neuroscience, 14, 105. Scholar
  159. 159.
    Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., et al. (2018). Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics, 50(4), 621–629. Scholar
  160. 160.
    Gusev, A., Mancuso, N., Won, H., Kousi, M., Finucane, H. K., Reshef, Y., et al. (2018). Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature Genetics, 50(4), 538–548. Scholar
  161. 161.
    Skene, N. G., Bryois, J., Bakken, T. E., Breen, G., Crowley, J. J., Gaspar, H. A., et al. (2018). Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 50(6), 825–833. Scholar
  162. 162.
    Roussos, P., Katsel, P., Davis, K. L., Siever, L. J., & Haroutunian, V. (2012). A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Archives of General Psychiatry, 69(12), 1205–1213. Scholar
  163. 163.
    Radulescu, E., Jaffe, A. E., Straub, R. E., Chen, Q., Shin, J. H., Hyde, T. M., et al. (2018). Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Molecular Psychiatry.
  164. 164.
    Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 48(3), 245–252. Scholar
  165. 165.
    Huckins L. M., Dobbyn A., Ruderfer D. M., Hoffman G., Wang W., Pardiñas A. F., et al. (2019) Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics 51(4):659–674Google Scholar
  166. 166.
    The Network, O'Dushlaine, C., Rossin, L., Lee, P. H., Duncan, L., Parikshak, N. N., et al. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18, 199. Scholar
  167. 167.
    Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B. E., Liu, X. S., et al. (2013). Chromatin marks identify critical cell types for fine mapping complex trait variants. Nature Genetics, 45(2), 124–130. Scholar
  168. 168.
    Roussos, P., Mitchell, A. C., Voloudakis, G., Fullard, J. F., Pothula, V. M., Tsang, J., et al. (2014). A role for noncoding variation in schizophrenia. Cell Reports, 9(4), 1417–1429. Scholar
  169. 169.
    Psych, E. C., Akbarian, S., Liu, C., Knowles, J. A., Vaccarino, F. M., Farnham, P. J., et al. (2015). The PsychENCODE project. Nature Neuroscience, 18(12), 1707–1712. Scholar
  170. 170.
    Girdhar, K., Hoffman, G. E., Jiang, Y., Brown, L., Kundakovic, M., Hauberg, M. E., et al. (2018). Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nature Neuroscience, 21(8), 1126–1136. Scholar
  171. 171.
    Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R., et al. (2016). Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nature Neuroscience, 19(1), 40–47. Scholar
  172. 172.
    Schulz, H., Ruppert, A. K., Herms, S., Wolf, C., Mirza-Schreiber, N., Stegle, O., et al. (2017). Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nature Communications, 8(1), 1511. Scholar
  173. 173.
    Dobbyn, A., Huckins, L. M., Boocock, J., Sloofman, L. G., Glicksberg, B. S., Giambartolomei, C., et al. (2018). Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. American Journal of Human Genetics, 102(6), 1169–1184. Scholar
  174. 174.
    Rajarajan, P., Borrman, T., Liao, W., Schrode, N., Flaherty, E., Casino, C., et al. (2018a). Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 362(6420), eaat4311. Scholar
  175. 175.
    Bharadwaj, R., Jiang, Y., Mao, W., Jakovcevski, M., Dincer, A., Krueger, W., et al. (2013). Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. The Journal of Neuroscience, 33(29), 11839–11851. Scholar
  176. 176.
    Bharadwaj, R., Peter, C. J., Jiang, Y., Roussos, P., Vogel-Ciernia, A., Shen, E. Y., et al. (2014). Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron, 84(5), 997–1008. Scholar
  177. 177.
    Bryois, J., Garrett, M. E., Song, L., Safi, A., Giusti-Rodriguez, P., Johnson, G. D., et al. (2018). Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 9(1), 3121. Scholar
  178. 178.
    Fullard, J. F., Giambartolomei, C., Hauberg, M. E., Xu, K., Voloudakis, G., Shao, Z., et al. (2017). Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Human Molecular Genetics, 26(10), 1942–1951. Scholar
  179. 179.
    Fullard, J. F., Hauberg, M. E., Bendl, J., Egervari, G., Cirnaru, M. D., Reach, S. M., et al. (2018). An atlas of chromatin accessibility in the adult human brain. Genome Research, 28(8), 1243–1252. Scholar
  180. 180.
    Won, H., de la Torre-Ubieta, L., Stein, J. L., Parikshak, N. N., Huang, J., Opland, C. K., et al. (2016). Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 538(7626), 523–527. Scholar
  181. 181.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. Scholar
  182. 182.
    Narsinh, K. H., Plews, J., & Wu, J. C. (2011). Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Molecular Therapy, 19(4), 635–638. Scholar
  183. 183.
    Hoffman, G. E., Schrode, N., Flaherty, E., & Brennand, K. J. (2018). New considerations for hiPSC-based models of neuropsychiatric disorders. Molecular Psychiatry, 24, 49. Scholar
  184. 184.
    Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8(1), 106–118. Scholar
  185. 185.
    Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73. Scholar
  186. 186.
    Julia, T. C. W., Carvalho, C. M. B., Yuan, B., Gu, S., Altheimer, A. N., McCarthy, S., et al. (2017). Divergent levels of marker chromosomes in an hiPSC-based model of psychosis. Stem Cell Reports, 8(3), 519–528. Scholar
  187. 187.
    Grochowski, C. M., Gu, S., Yuan, B., Tcw, J., Brennand, K. J., Sebat, J., et al. (2018). Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Human Mutation, 39(7), 939–946. Scholar
  188. 188.
    Kyttala, A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy, K. K., et al. (2016). Genetic variability overrides the impact of parental cell type and determines iPSC Differentiation Potential. Stem Cell Reports, 6(2), 200–212. Scholar
  189. 189.
    Hoffman, G. E., Hartley, B. J., Flaherty, E., Ladran, I., Gochman, P., Ruderfer, D. M., et al. (2017). Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 8(1), 2225. Scholar
  190. 190.
    Nehme, R., Zuccaro, E., Ghosh, S. D., Li, C., Sherwood, J. L., Pietilainen, O., et al. (2018). Combining NGN2 Programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Reports, 23(8), 2509–2523. Scholar
  191. 191.
    Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews Neuroscience, 17(7), 424–437. Scholar
  192. 192.
    Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. Scholar
  193. 193.
    Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539. Scholar
  194. 194.
    Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12(5), 559–572. Scholar
  195. 195.
    Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480(7378), 547–551. Scholar
  196. 196.
    Lu J., Zhong X., Liu H., Hao L., Tzu-Ling Huang C., Sherafat M. A., et al. (2016) Generation of serotonin neurons from human pluripotent stem cells. Nature Biotechnology 34(1):89–94Google Scholar
  197. 197.
    Yu, D. X., Di Giorgio, F. P., Yao, J., Marchetto, M. C., Brennand, K., Wright, R., et al. (2014). Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports, 2(3), 295–310. Scholar
  198. 198.
    Sarkar, A., Mei, A., Paquola, A. C. M., Stern, S., Bardy, C., Klug, J. R., et al. (2018). Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell, 22(5), 684–697. e689. Scholar
  199. 199.
    Qi, Y., Zhang, X. J., Renier, N., Wu, Z., Atkin, T., Sun, Z., et al. (2017). Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nature Biotechnology, 35(2), 154–163. Scholar
  200. 200.
    Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A. J., et al. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nature Genetics, 50(1), 54–61. Scholar
  201. 201.
    Kuijlaars, J., Oyelami, T., Diels, A., Rohrbacher, J., Versweyveld, S., Meneghello, G., et al. (2016). Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Scientific Reports, 6, 36529. Scholar
  202. 202.
    Gunhanlar, N., Shpak, G., van der Kroeg, M., Gouty-Colomer, L. A., Munshi, S. T., Lendemeijer, B., et al. (2018). A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Molecular Psychiatry, 23(5), 1336–1344. Scholar
  203. 203.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041. Scholar
  204. 204.
    Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223. Scholar
  205. 205.
    Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798. Scholar
  206. 206.
    Ho, S. M., Hartley, B. J., Tcw, J., Beaumont, M., Stafford, K., Slesinger, P. A., et al. (2016). Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods, 101, 113–124. Scholar
  207. 207.
    Colasante, G., Lignani, G., Rubio, A., Medrihan, L., Yekhlef, L., Sessa, A., et al. (2015). Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell, 17(6), 719–734. Scholar
  208. 208.
    Sun, A. X., Yuan, Q., Tan, S., Xiao, Y., Wang, D., Khoo, A. T., et al. (2016). Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Reports, 16(7), 1942–1953. Scholar
  209. 209.
    Yang, N., Chanda, S., Marro, S., Ng, Y. H., Janas, J. A., Haag, D., et al. (2017). Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 14(6), 621–628. Scholar
  210. 210.
    Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227. Scholar
  211. 211.
    Theka, I., Caiazzo, M., Dvoretskova, E., Leo, D., Ungaro, F., Curreli, S., et al. (2013). Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Translational Medicine, 2(6), 473–479. Scholar
  212. 212.
    Lu, J., Zhong, X., Liu, H., Hao, L., Huang, C. T., Sherafat, M. A., et al. (2016). Generation of serotonin neurons from human pluripotent stem cells. Nature Biotechnology, 34(1), 89–94. Scholar
  213. 213.
    Vadodaria, K. C., Mertens, J., Paquola, A., Bardy, C., Li, X., Jappelli, R., et al. (2016). Generation of functional human serotonergic neurons from fibroblasts. Molecular Psychiatry, 21(1), 49–61. Scholar
  214. 214.
    Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–225. Scholar
  215. 215.
    Hook, V., Brennand, K. J., Kim, Y., Toneff, T., Funkelstein, L., Lee, K. C., et al. (2014). Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports, 3(4), 531–538. Scholar
  216. 216.
    Robicsek, O., Karry, R., Petit, I., Salman-Kesner, N., Muller, F. J., Klein, E., et al. (2013). Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Molecular Psychiatry, 18(10), 1067–1076. Scholar
  217. 217.
    Xu, J., Hartley, B. J., Kurup, P., Phillips, A., Topol, A., Xu, M., et al. (2018). Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Molecular Psychiatry, 23(2), 271–281. Scholar
  218. 218.
    Carty, N. C., Xu, J., Kurup, P., Brouillette, J., Goebel-Goody, S. M., Austin, D. R., et al. (2012). The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Translational Psychiatry, 2, e137. Scholar
  219. 219.
    Brennand, K., Savas, J. N., Kim, Y., Tran, N., Simone, A., Hashimoto-Torii, K., et al. (2015). Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry, 20(3), 361–368. Scholar
  220. 220.
    Topol, A., English, J. A., Flaherty, E., Rajarajan, P., Hartley, B. J., Gupta, S., et al. (2015a). Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Translational Psychiatry, 5, e662. Scholar
  221. 221.
    Topol, A., Zhu, S., Tran, N., Simone, A., Fang, G., & Brennand, K. J. (2015b). Altered WNT signaling in human induced pluripotent stem cell neural progenitor cells derived from four schizophrenia patients. Biological Psychiatry, 78(6), e29–e34. Scholar
  222. 222.
    Casas, B. S., Vitoria, G., do Costa, M. N., Madeiro da Costa, R., Trindade, P., Maciel, R., et al. (2018). hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Translational Psychiatry, 8(1), 48. Scholar
  223. 223.
    Hino, M., Kunii, Y., Matsumoto, J., Wada, A., Nagaoka, A., Niwa, S., et al. (2016). Decreased VEGFR2 expression and increased phosphorylated Akt1 in the prefrontal cortex of individuals with schizophrenia. Journal of Psychiatric Research, 82, 100–108. Scholar
  224. 224.
    Lee, B. H., Hong, J. P., Hwang, J. A., Ham, B. J., Na, K. S., Kim, W. J., et al. (2015). Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Research, 228(1), 95–99. Scholar
  225. 225.
    Lopes, R., Soares, R., Coelho, R., & Figueiredo-Braga, M. (2015). Angiogenesis in the pathophysiology of schizophrenia - a comprehensive review and a conceptual hypothesis. Life Sciences, 128, 79–93. Scholar
  226. 226.
    Gonzalez, D. M., Gregory, J., & Brennand, K. J. (2017). The importance of non-neuronal cell types in hiPSC-based disease modeling and drug screening. Frontiers in Cell and Development Biology, 5, 117. Scholar
  227. 227.
    Ben-Shachar, D. (2002). Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. Journal of Neurochemistry, 83(6), 1241–1251.PubMedGoogle Scholar
  228. 228.
    Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T., Griffin, J. L., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 9(7), 684–697, 643. Scholar
  229. 229.
    Uguz, A. C., Demirci, K., & Espino, J. (2016). The importance of melatonin and mitochondria interaction in mood disorders and schizophrenia: a current assessment. Current Medicinal Chemistry, 23(20), 2146–2158.PubMedGoogle Scholar
  230. 230.
    Paulsen Bda, S., de Moraes Maciel, R., Galina, A., Souza da Silveira, M., dos Santos Souza, C., Drummond, H., et al. (2012). Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplantation, 21(7), 1547–1559. Scholar
  231. 231.
    Robicsek, O., Ene, H. M., Karry, R., Ytzhaki, O., Asor, E., McPhie, D., et al. (2018). Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophrenia Bulletin, 44(2), 432–442. Scholar
  232. 232.
    Caputo, V., Ciolfi, A., Macri, S., & Pizzuti, A. (2015). The emerging role of MicroRNA in schizophrenia. CNS & Neurological Disorders Drug Targets, 14(2), 208–221.Google Scholar
  233. 233.
    Shi, S., Leites, C., He, D., Schwartz, D., Moy, W., Shi, J., et al. (2014). MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. The Journal of Biological Chemistry, 289(19), 13434–13444. Scholar
  234. 234.
    Han, J., Kim, H. J., Schafer, S. T., Paquola, A., Clemenson, G. D., Toda, T., et al. (2016). Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron, 91(1), 79–89. Scholar
  235. 235.
    Topol, A., Zhu, S., Hartley, B. J., English, J., Hauberg, M. E., Tran, N., et al. (2016). Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Reports, 15(5), 1024–1036. Scholar
  236. 236.
    Hauberg, M. E., Roussos, P., Grove, J., Borglum, A. D., Mattheisen, M., & Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2016). Analyzing the role of MicroRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry, 73(4), 369–377. Scholar
  237. 237.
    Hoffman, G. E., & Brennand, K. J. (2018). Mapping regulatory variants in hiPSC models. Nature Genetics, 50(1), 1–2. Scholar
  238. 238.
    Roussos, P., Guennewig, B., Kaczorowski, D. C., Barry, G., & Brennand, K. J. (2016). Activity-dependent changes in gene expression in schizophrenia human-induced pluripotent stem cell neurons. JAMA Psychiatry, 73(11), 1180–1188. Scholar
  239. 239.
    Yoshimizu, T., Pan, J. Q., Mungenast, A. E., Madison, J. M., Su, S., Ketterman, J., et al. (2015). Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Molecular Psychiatry, 20(2), 162–169. Scholar
  240. 240.
    Forrest, M. P., Zhang, H., Moy, W., McGowan, H., Leites, C., Dionisio, L. E., et al. (2017). Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell, 21(3), 305–318. e308. Scholar
  241. 241.
    Powell, S. K., Gregory, J., Akbarian, S., & Brennand, K. J. (2017). Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Molecular and Cellular Neurosciences, 82, 157–166. Scholar
  242. 242.
    Ho, S. M., Hartley, B. J., Flaherty, E., Rajarajan, P., Abdelaal, R., Obiorah, I., et al. (2017). Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes. Stem Cell Reports, 9(2), 615–628. Scholar
  243. 243.
    Jiang, Y., Loh, Y. E., Rajarajan, P., Hirayama, T., Liao, W., Kassim, B. S., et al. (2017). The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nature Genetics, 49(8), 1239–1250. Scholar
  244. 244.
    Rajarajan, P., Jiang, Y., Kassim, B. S., & Akbarian, S. (2018b). Chromosomal conformations and epigenomic regulation in schizophrenia. Progress in Molecular Biology and Translational Science, 157, 21–40. Scholar
  245. 245.
    Zarrei, M., MacDonald, J. R., Merico, D., & Scherer, S. W. (2015). A copy number variation map of the human genome. Nature Reviews Genetics, 16(3), 172–183. Scholar
  246. 246.
    Ahn, K., Gotay, N., Andersen, T. M., Anvari, A. A., Gochman, P., Lee, Y., et al. (2014). High rate of disease-related copy number variations in childhood onset schizophrenia. Molecular Psychiatry, 19(5), 568–572. Scholar
  247. 247.
    Flaherty E. K., Brennand K. J., (2017) Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Research 1655:283–293Google Scholar
  248. 248.
    Gothelf, D., Eliez, S., Thompson, T., Hinard, C., Penniman, L., Feinstein, C., et al. (2005). COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nature Neuroscience, 8(11), 1500–1502. Scholar
  249. 249.
    Gothelf, D., Feinstein, C., Thompson, T., Gu, E., Penniman, L., Van Stone, E., et al. (2007). Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. The American Journal of Psychiatry, 164(4), 663–669. Scholar
  250. 250.
    Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56(10), 940–945.PubMedGoogle Scholar
  251. 251.
    Pedrosa, E., Sandler, V., Shah, A., Carroll, R., Chang, C., Rockowitz, S., et al. (2011). Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. Journal of Neurogenetics, 25(3), 88–103. Scholar
  252. 252.
    Lin, M., Pedrosa, E., Hrabovsky, A., Chen, J., Puliafito, B. R., Gilbert, S. R., et al. (2016). Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Systems Biology, 10(1), 105. Scholar
  253. 253.
    Zhao, D., Lin, M., Chen, J., Pedrosa, E., Hrabovsky, A., Fourcade, H. M., et al. (2015). MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 Del. PLoS One, 10(7), e0132387. Scholar
  254. 254.
    Toyoshima, M., Akamatsu, W., Okada, Y., Ohnishi, T., Balan, S., Hisano, Y., et al. (2016). Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Translational Psychiatry, 6(11), e934. Scholar
  255. 255.
    Warnica, W., Merico, D., Costain, G., Alfred, S. E., Wei, J., Marshall, C. R., et al. (2015). Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biological Psychiatry, 77(2), 158–166. Scholar
  256. 256.
    Yoon, K. J., Nguyen, H. N., Ursini, G., Zhang, F., Kim, N. S., Wen, Z., et al. (2014). Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell, 15(1), 79–91. Scholar
  257. 257.
    McCarthy S. E., Makarov V., Kirov G., Addington A. M., McClellan J., Yoon S., et al. (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics 41 (11):1223–1227Google Scholar
  258. 258.
    Deshpande, A., Yadav, S., Dao, D. Q., Wu, Z. Y., Hokanson, K. C., Cahill, M. K., et al. (2017). Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Reports, 21(10), 2678–2687. Scholar
  259. 259.
    Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O. P., Barnes, M. R., Toulopoulou, T., et al. (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics, 18(5), 988–996. Scholar
  260. 260.
    Zeng, L., Zhang, P., Shi, L., Yamamoto, V., Lu, W., & Wang, K. (2013). Functional impacts of NRXN1 knockdown on neurodevelopment in stem cell models. PLoS One, 8(3), e59685. Scholar
  261. 261.
    Pak, C., Danko, T., Zhang, Y., Aoto, J., Anderson, G., Maxeiner, S., et al. (2015). Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell, 17(3), 316–328. Scholar
  262. 262.
    Flaherty E., Zhu S., Barretto N., Cheng E., Michael Deans P. J., Fernando M. B., et al. (2019) Neuronal impact of patient-specific aberrant NRXN1α splicing. Nature Genetics 51 (12):1679–1690Google Scholar
  263. 263.
    Jacobs, P., Brunton, M., Frackiewicz, A., Newton, M., Cook, P., & Robson, E. (1970). Studies on a family with three cytogenetic markers. Annals of Human Genetics, 33, 325–336.Google Scholar
  264. 264.
    St Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706), 13–16.PubMedGoogle Scholar
  265. 265.
    Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9(9), 1415–1423.PubMedGoogle Scholar
  266. 266.
    Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E., & Margolis, R. L. (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular Psychiatry, 10(8), 758–764. Scholar
  267. 267.
    Green, E. K., Norton, N., Peirce, T., Grozeva, D., Kirov, G., Owen, M. J., et al. (2006). Evidence that a DISC1 frame-shift deletion associated with psychosis in a single family may not be a pathogenic mutation. Molecular Psychiatry, 11(9), 798–799. Scholar
  268. 268.
    Chiang, C. H., Su, Y., Wen, Z., Yoritomo, N., Ross, C. A., Margolis, R. L., et al. (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Molecular Psychiatry, 16(4), 358–360. Scholar
  269. 269.
    Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 515(7527), 414–418. Scholar
  270. 270.
    Murai, K., Sun, G., Ye, P., Tian, E., Yang, S., Cui, Q., et al. (2016). The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nature Communications, 7, 10965. Scholar
  271. 271.
    Yalla, K., Elliott, C., Day, J. P., Findlay, J., Barratt, S., Hughes, Z. A., et al. (2018). FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Molecular Psychiatry, 23(5), 1278–1286. Scholar
  272. 272.
    Chiu, F. L., Lin, J. T., Chuang, C. Y., Chien, T., Chen, C. M., Chen, K. H., et al. (2015). Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs. Human Molecular Genetics, 24(21), 6066–6079. Scholar
  273. 273.
    Chien, T., Weng, Y. T., Chang, S. Y., Lai, H. L., Chiu, F. L., Kuo, H. C., et al. (2018). GSK3beta negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Molecular Psychiatry.
  274. 274.
    Srikanth, P., Han, K., Callahan, D. G., Makovkina, E., Muratore, C. R., Lalli, M. A., et al. (2015). Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Reports, 12(9), 1414–1429. Scholar
  275. 275.
    Bradshaw, N. J., & Porteous, D. J. (2012). DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology, 62(3), 1230–1241. Scholar
  276. 276.
    Camargo, L. M., Collura, V., Rain, J. C., Mizuguchi, K., Hermjakob, H., Kerrien, S., et al. (2007). Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Molecular Psychiatry, 12(1), 74–86. Scholar
  277. 277.
    Camargo, L. M., Wang, Q., & Brandon, N. J. (2008). What can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology? Novartis Foundation Symposium, 289, 208–216; discussion 216-221, 238-240.PubMedGoogle Scholar
  278. 278.
    Teng, S., Thomson, P. A., McCarthy, S., Kramer, M., Muller, S., & Lihm, J. (2018). Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Molecular Psychiatry, 23(5), 1270–1277. Scholar
  279. 279.
    Nakata, K., Lipska, B. K., Hyde, T. M., Ye, T., Newburn, E. N., Morita, Y., et al. (2009). DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15873–15878. Scholar
  280. 280.
    Wilkinson, B., Evgrafov, O. V., Zheng, D., Hartel, N., Knowles, J. A., Graham, N. A., et al. (2018). Endogenous cell type-specific disrupted in schizophrenia 1 interactomes reveal protein networks associated with neurodevelopmental disorders. Biological Psychiatry, 85, 305. Scholar
  281. 281.
    Turner, T. N., Yi, Q., Krumm, N., Huddleston, J., Hoekzema, K., Stessman, H. A., et al. (2017). denovo-db: a compendium of human de novo variants. Nucleic Acids Research, 45(D1), D804–D811. Scholar
  282. 282.
    Bakircioglu, M., Carvalho, O. P., Khurshid, M., Cox, J. J., Tuysuz, B., Barak, T., et al. (2011). The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. American Journal of Human Genetics, 88(5), 523–535. Scholar
  283. 283.
    Ye, F., Kang, E., Yu, C., Qian, X., Jacob, F., Yu, C., et al. (2017). DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron, 96(5), 1041–1054. e1045. Scholar
  284. 284.
    Mathieson, I., Munafo, M. R., & Flint, J. (2012). Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Molecular Psychiatry, 17(6), 634–641. Scholar
  285. 285.
    Richards, A. L., Leonenko, G., Walters, J. T., Kavanagh, D. H., Rees, E. G., Evans, A., et al. (2016). Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics, 25(5), 1001–1007. Scholar
  286. 286.
    Farrell, M. S., Werge, T., Sklar, P., Owen, M. J., Ophoff, R. A., O'Donovan, M. C., et al. (2015). Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 20(5), 555–562. Scholar
  287. 287.
    Sullivan, P. F. (2013). Questions about DISC1 as a genetic risk factor for schizophrenia. Molecular Psychiatry, 18(10), 1050–1052. Scholar
  288. 288.
    Lee I. S., Carvalho C. M. B., Douvaras P., Ho S-M, Hartley B. J., Zuccherato L. W., et al. (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1 (1)Google Scholar
  289. 289.
    Flaherty, E., Deranieh, R. M., Artimovich, E., Lee, I. S., Siegel, A. J., Levy, D. L., et al. (2017). Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 3, 35. Scholar
  290. 290.
    de Vrij, F. M., Bouwkamp, C. G., Gunhanlar, N., Shpak, G., Lendemeijer, B., Baghdadi, M., et al. (2018). Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia. Molecular Psychiatry, 24, 757. Scholar
  291. 291.
    Guennewig, B., Bitar, M., Obiorah, I., Hanks, J., O'Brien, E. A., Kaczorowski, D. C., et al. (2018). THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Translational Psychiatry, 8(1), 89. Scholar
  292. 292.
    Obiorah, I. V., Muhammad, H., Stafford, K., Flaherty, E. K., & Brennand, K. J. (2017). THC treatment alters glutamate receptor gene expression in human stem cell-derived neurons. Molecular Neuropsychiatry, 3(2), 73–84. Scholar
  293. 293.
    Khandaker, G. M., Zimbron, J., Lewis, G., & Jones, P. B. (2013). Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychological Medicine, 43(2), 239–257. Scholar
  294. 294.
    Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., et al. (2015). Schizophrenia. Nature Reviews Disease Primers, 1, 15067. Scholar
  295. 295.
    Walsh, N. C., Kenney, L. L., Jangalwe, S., Aryee, K. E., Greiner, D. L., Brehm, M. A., et al. (2017). Humanized mouse models of clinical disease. Annual Review of Pathology, 12, 187–215. Scholar
  296. 296.
    Allswede, D. M., Buka, S. L., Yolken, R. H., Torrey, E. F., & Cannon, T. D. (2016). Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophrenia Research, 172(1–3), 41–45. Scholar
  297. 297.
    Lin, M., Zhao, D., Hrabovsky, A., Pedrosa, E., Zheng, D., & Lachman, H. M. (2014). Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One, 9(4), e94968. Scholar
  298. 298.
    Hashimoto-Torii, K., Torii, M., Fujimoto, M., Nakai, A., El Fatimy, R., Mezger, V., et al. (2014). Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron, 82(3), 560–572. Scholar
  299. 299.
    Ishii, S., Torii, M., Son, A. I., Rajendraprasad, M., Morozov, Y. M., Kawasawa, Y. I., et al. (2017). Variations in brain defects result from cellular mosaicism in the activation of heat shock signalling. Nature Communications, 8, 15157. Scholar
  300. 300.
    Vallersnes, O. M., Dines, A. M., Wood, D. M., Yates, C., Heyerdahl, F., Hovda, K. E., et al. (2016). Psychosis associated with acute recreational drug toxicity: a European case series. BMC Psychiatry, 16, 293. Scholar
  301. 301.
    Callaghan, R. C., Cunningham, J. K., Allebeck, P., Arenovich, T., Sajeev, G., Remington, G., et al. (2012). Methamphetamine use and schizophrenia: a population-based cohort study in California. The American Journal of Psychiatry, 169(4), 389–396. Scholar
  302. 302.
    Nielsen, S. M., Toftdahl, N. G., Nordentoft, M., & Hjorthoj, C. (2017). Association between alcohol, cannabis, and other illicit substance abuse and risk of developing schizophrenia: a nationwide population based register study. Psychological Medicine, 47(9), 1668–1677. Scholar
  303. 303.
    de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76(2–3), 135–157. Scholar
  304. 304.
    Pasman, J. A., Verweij, K. J. H., Gerring, Z., Stringer, S., Sanchez-Roige, S., Treur, J. L., et al. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nature Neuroscience, 21(9), 1161–1170. Scholar
  305. 305.
    Chatterton, Z., Hartley, B. J., Seok, M. H., Mendelev, N., Chen, S., Milekic, M., et al. (2017). In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics & Chromatin, 10, 4. Scholar
  306. 306.
    Oedegaard, K. J., Alda, M., Anand, A., Andreassen, O. A., Balaraman, Y., Berrettini, W. H., et al. (2016). The pharmacogenomics of bipolar disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry, 16, 129. Scholar
  307. 307.
    Ruderfer, D. M., Charney, A. W., Readhead, B., Kidd, B. A., Kahler, A. K., Kenny, P. J., et al. (2016). Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry, 3(4), 350–357. Scholar
  308. 308.
    Li, J., Yoshikawa, A., Brennan, M. D., Ramsey, T. L., & Meltzer, H. Y. (2018). Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophrenia Research, 192, 194–204. Scholar
  309. 309.
    Kim, Y., Giusti-Rodriguez, P., Crowley, J. J., Bryois, J., Nonneman, R. J., Ryan, A. K., et al. (2018). Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Molecular Psychiatry, 23(3), 708–712. Scholar
  310. 310.
    Readhead, B., Hartley, B. J., Eastwood, B. J., Collier, D. A., Evans, D., & Farias, R. (2018). Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nature Communications, 9(1), 4412. Scholar
  311. 311.
    Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W. K., Qian, X., et al. (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 22(10), 1101–1107. Scholar
  312. 312.
    Zhou, T., Tan, L., Cederquist, G. Y., Fan, Y., Hartley, B. J., Mukherjee, S., et al. (2017). High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell, 21(2), 274–283. e275. Scholar
  313. 313.
    Watanabe, M., Buth, J. E., Vishlaghi, N., de la Torre-Ubieta, L., Taxidis, J., Khakh, B. S., et al. (2017). Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Reports, 21(2), 517–532. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Samuel K. Powell
    • 1
    • 2
    • 3
    • 4
    • 5
  • Callan P. O’Shea
    • 2
    • 3
  • Sara Rose Shannon
    • 2
    • 3
  • Schahram Akbarian
    • 2
    • 4
    • 5
  • Kristen J. Brennand
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Medical Scientist Training ProgramIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of Genetics and GenomicsIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations