Advertisement

Advances in Human Stem Cells and Genome Editing to Understand and Develop Treatment for Fragile X Syndrome

  • Xinyu ZhaoEmail author
  • Anita BhattacharyyaEmail author
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 25)

Abstract

Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research using animal models, understanding how FMRP regulates human brain development and function remains a major challenge. Human pluripotent stem cells (hPSCs) offer powerful platforms for studying mechanisms of human diseases and for evaluating potential treatments. Genome editing, particularly the CRISPR/Cas9-based method, is highly effective for generating models to study genetic human diseases. Here we summarize how hPSCs and genome editing provide much-needed models for studying the genetic underpinnings, cellular mechanisms, and neuropathology that are unique to human FXS. The use of hPSCs and genome editing also provides an essential platform for therapeutic development in FXS.

Keywords

CRISPR Fragile X FMR1 Trinucleotide repeats Pluripotent stem cells 

References

  1. 1.
    Coffee, B., Keith, K., Albizua, I., Malone, T., Mowrey, J., Sherman, S. L., et al. (2009). Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. American Journal of Human Genetics, 85, 503–514.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hagerman, R. J., & Hagerman, P. J. (2002). Fragile X syndrome (Vol. 2). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  3. 3.
    Cohen, I. L., Sudhalter, V., Pfadt, A., Jenkins, E. C., Brown, W. T., & Vietze, P. M. (1991). Why are autism and the fragile-X syndrome associated? Conceptual and methodological issues. American Journal of Human Genetics, 48, 195–202.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fisch, G. S., Cohen, I. L., Wolf, E. G., Brown, W. T., Jenkins, E. C., & Gross, A. (1986). Autism and the fragile X syndrome. American Journal of Psychiatry, 143, 71–73.PubMedGoogle Scholar
  5. 5.
    Hagerman, R. J., Ono, M. Y., & Hagerman, P. J. (2005). Recent advances in fragile X: A model for autism and neurodegeneration. Current Opinion Psychiatry, 18, 490–496.Google Scholar
  6. 6.
    Hatton, D. D., Sideris, J., Skinner, M., Mankowski, J., Bailey Jr., D. B., Roberts, J., et al. (2006). Autistic behavior in children with fragile X syndrome: Prevalence, stability, and the impact of FMRP. American Journal of Medical Genetics Part A, 140a, 1804–1813.PubMedGoogle Scholar
  7. 7.
    Kaufmann, W. E., Cortell, R., Kau, A. S., Bukelis, I., Tierney, E., Gray, R. M., et al. (2004). Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. American Journal of Medical Genetics Part A, 129, 225–234.Google Scholar
  8. 8.
    Lathe, R. (2009). Fragile X and autism. Autism: The International Journal of Research and Practice, 13, 194–197.Google Scholar
  9. 9.
    Reiss, A. L., Feinstein, C., & Rosenbaum, K. N. (1986). Autism and genetic disorders. Schizophrenia Bulletin, 12, 724–738.PubMedGoogle Scholar
  10. 10.
    Pieretti, M., Zhang, F. P., Fu, Y. H., Warren, S. T., Oostra, B. A., Caskey, C. T., et al. (1991). Absence of expression of the FMR-1 gene in fragile X syndrome. Cell, 66, 817–822.PubMedGoogle Scholar
  11. 11.
    Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.PubMedGoogle Scholar
  12. 12.
    Eberhart, D. E., Malter, H. E., Feng, Y., & Warren, S. T. (1996). The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Human Molecular Genetics, 5, 1083–1091.PubMedGoogle Scholar
  13. 13.
    Liu-Yesucevitz, L., Bassell, G. J., Gitler, A. D., Hart, A. C., Klann, E., Richter, J. D., et al. (2011). Local RNA translation at the synapse and in disease. Journal of Neuroscience, 31, 16086–16093.PubMedGoogle Scholar
  14. 14.
    Sidorov, M. S., Auerbach, B. D., & Bear, M. F. (2013). Fragile X mental retardation protein and synaptic plasticity. Molecular Brain, 6, 15.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Li, Y., & Zhao, X. (2014). Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells, 32, 1724–1733.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hinton, V. J., Brown, W. T., Wisniewski, K., & Rudelli, R. D. (1991). Analysis of neocortex in three males with the fragile X syndrome. American Journal of Medical Genetics, 41, 289–294.PubMedGoogle Scholar
  17. 17.
    Irwin, S. A., Patel, B., Idupulapati, M., Harris, J. B., Crisostomo, R. A., Larsen, B. P., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. American Journal of Medical Genetics, 98, 161–167.PubMedGoogle Scholar
  18. 18.
    Wisniewski, K. E., Segan, S. M., Miezejeski, C. M., Sersen, E. A., & Rudelli, R. D. (1991). The Fra(X) syndrome: Neurological, electrophysiological, and neuropathological abnormalities. American Journal of Medical Genetics, 38, 476–480.PubMedGoogle Scholar
  19. 19.
    Chen, L. S., Tassone, F., Sahota, P., & Hagerman, P. J. (2003). The (CGG)n repeat element within the 5′ untranslated region of the FMR1 message provides both positive and negative cis effects on in vivo translation of a downstream reporter. Human Molecular Genetics, 12, 3067–3074.PubMedGoogle Scholar
  20. 20.
    Fu, Y. H., Kuhl, D. P., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., et al. (1991). Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell, 67, 1047–1058.PubMedGoogle Scholar
  21. 21.
    Mailick, M. R., Hong, J., Rathouz, P., Baker, M. W., Greenberg, J. S., Smith, L., et al. (2014). Low-normal FMR1 CGG repeat length: Phenotypic associations. Frontiers in Genetics, 5, 309.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jobe, E. M., McQuate, A. L., & Zhao, X. (2012). Crosstalk among epigenetic pathways regulates neurogenesis. Frontiers in Neuroscience, 6, 59.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Piccolo, F. M., & Fisher, A. G. (2014). Getting rid of DNA methylation. Trends in Cell Biology, 24, 136–143.PubMedGoogle Scholar
  24. 24.
    Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.PubMedGoogle Scholar
  25. 25.
    Pastori, C., Peschansky, V. J., Barbouth, D., Mehta, A., Silva, J. P., & Wahlestedt, C. (2014). Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in fragile X syndrome and fragile X-associated tremor/ataxia syndrome. Human Genetics, 133, 59–67.PubMedGoogle Scholar
  26. 26.
    Peschansky, V. J., Pastori, C., Zeier, Z., Motti, D., Wentzel, K., Velmeshev, D., et al. (2015). Changes in expression of the long non-coding RNA FMR4 associate with altered gene expression during differentiation of human neural precursor cells. Frontiers in Genetics, 6, 263.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Shaw, M. A., Chiurazzi, P., Romain, D. R., Neri, G., & Gecz, J. (2002). A novel gene, FAM11A, associated with the FRAXF CpG island is transcriptionally silent in FRAXF full mutation. European Journal of Human Genetics, 10, 767–772.PubMedGoogle Scholar
  28. 28.
    Ladd, P. D., Smith, L. E., Rabaia, N. A., Moore, J. M., Georges, S. A., Hansen, R. S., et al. (2007). An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Human Molecular Genetics, 16, 3174–3187.PubMedGoogle Scholar
  29. 29.
    Stoger, R., Genereux, D. P., Hagerman, R. J., Hagerman, P. J., Tassone, F., & Laird, C. D. (2011). Testing the FMR1 promoter for mosaicism in DNA methylation among CpG sites, strands, and cells in FMR1-expressing males with fragile X syndrome. PLoS One, 6, e23648.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hagerman, R. J., Hull, C. E., Safanda, J. F., Carpenter, I., Staley, L. W., O’Connor, R. A., et al. (1994). High functioning fragile X males: Demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. American Journal of Medical Genetics, 51, 298–308.PubMedGoogle Scholar
  31. 31.
    Loesch, D. Z., Huggins, R., Hay, D. A., Gedeon, A. K., Mulley, J. C., & Sutherland, G. R. (1993). Genotype-phenotype relationships in fragile X syndrome: A family study. American Journal of Human Genetics, 53, 1064–1073.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Loesch, D. Z., Huggins, R. M., & Hagerman, R. J. (2004). Phenotypic variation and FMRP levels in fragile X. Mental Retardation and Developmental Disabilities Research Reviews, 10, 31–41.PubMedGoogle Scholar
  33. 33.
    Loesch, D. Z., Sherwell, S., Kinsella, G., Tassone, F., Taylor, A., Amor, D., et al. (2012). Fragile X-associated tremor/ataxia phenotype in a male carrier of unmethylated full mutation in the FMR1 gene. Clinical Genetics, 82, 88–92.PubMedGoogle Scholar
  34. 34.
    Brouwer, J. R., Mientjes, E. J., Bakker, C. E., Nieuwenhuizen, I. M., Severijnen, L. A., Van der Linde, H. C., et al. (2007). Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated fragile X full mutation. Experimental Cell Research, 313, 244–253.PubMedGoogle Scholar
  35. 35.
    Clowry, G., Molnar, Z., & Rakic, P. (2010). Renewed focus on the developing human neocortex. Journal of Anatomy, 217, 276–288.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dehay, C., & Kennedy, H. (2007). Cell-cycle control and cortical development. Nature Reviews Neuroscience, 8, 438–450.PubMedGoogle Scholar
  37. 37.
    Johnson, M. B., Kawasawa, Y. I., Mason, C. E., Krsnik, Z., Coppola, G., Bogdanovic, D., et al. (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron, 62, 494–509.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kennedy, H., & Dehay, C. (2012). Self-organization and interareal networks in the primate cortex. Progress in Brain Research, 195, 341–360.PubMedGoogle Scholar
  39. 39.
    Rakic, P. (2009). Evolution of the neocortex: Perspective from developmental biology. Nature Reviews Neuroscience, 10, 724–735.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Molnár, Z., & Clowry, G. (2012). Chapter 3 - Cerebral cortical development in rodents and primates. In M. A. Hofman & D. Falk (Eds.), Progress in brain research (pp. 45–70). Amsterdam: Elsevier.Google Scholar
  41. 41.
    Dehay, C., Kennedy, H., & Kosik, K. S. (2015). The outer subventricular zone and primate-specific cortical complexification. Neuron, 85, 683–694.PubMedGoogle Scholar
  42. 42.
    Fish, J. L., Dehay, C., Kennedy, H., & Huttner, W. B. (2008). Making bigger brains-the evolution of neural-progenitor-cell division. Journal of Cell Science, 121, 2783–2793.PubMedGoogle Scholar
  43. 43.
    Hansen, D. V., Lui, J. H., Parker, P. R., & Kriegstein, A. R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464, 554–561.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Lui, J. H., Hansen, D. V., & Kriegstein, A. R. (2011). Development and evolution of the human neocortex. Cell, 146, 18–36.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Smart, I. H., Dehay, C., Giroud, P., Berland, M., & Kennedy, H. (2002). Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cerebral Cortex, 12, 37–53.PubMedGoogle Scholar
  46. 46.
    Bakken, T. E., Miller, J. A., Ding, S. L., Sunkin, S. M., Smith, K. A., Ng, L., et al. (2016). A comprehensive transcriptional map of primate brain development. Nature, 535, 367–375.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M., & Sestan, N. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron, 89, 248–268.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O., & Sestan, N. (2017). Evolution of the human nervous system function, structure, and development. Cell, 170, 226–247.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Florio, M., et al. (2015). Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 347(6229), 1465–1470.Google Scholar
  50. 50.
    Florio, M., et al. (2018). Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex. Elife, 7.Google Scholar
  51. 51.
    Kalebic, N., Gilardi, C., Albert, M., Namba, T., Long, K. R., Kostic, M., et al. (2018). Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. eLife, 7, e41241.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hansen, D. V., Lui, J. H., Flandin, P., Yoshikawa, K., Rubenstein, J. L., Alvarez-Buylla, A., et al. (2013). Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nature Neuroscience, 16, 1576–1587.PubMedPubMedCentralGoogle Scholar
  53. 53.
    LaMonica, B. E., Lui, J. H., Wang, X., & Kriegstein, A. R. (2012). OSVZ progenitors in the human cortex: An updated perspective on neurodevelopmental disease. Current Opinion in Neurobiology, 22, 747–753.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Marin, O. (2013). Human cortical interneurons take their time. Cell Stem Cell, 12, 497–499.PubMedGoogle Scholar
  55. 55.
    Tyson, J. A., & Anderson, S. A. (2013). The protracted maturation of human ESC-derived interneurons. Cell Cycle, 12, 3129–3130.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhao, X., & Bhattacharyya, A. (2018). Human models are needed for studying human neurodevelopmental disorders. American Journal of Human Genetics, 103, 829–857.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.PubMedGoogle Scholar
  58. 58.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.PubMedGoogle Scholar
  60. 60.
    Verlinsky, Y., Strelchenko, N., Kukharenko, V., Rechitsky, S., Verlinsky, O., Galat, V., et al. (2005). Human embryonic stem cell lines with genetic disorders. Reproductive Biomedicine Online, 10, 105–110.PubMedGoogle Scholar
  61. 61.
    Ben-Yosef, D., Malcov, M., & Eiges, R. (2008). PGD-derived human embryonic stem cell lines as a powerful tool for the study of human genetic disorders. Molecular and Cellular Endocrinology, 282, 153–158.PubMedGoogle Scholar
  62. 62.
    Kuliev, A., Rechitsky, S., Tur-Kaspa, I., & Verlinsky, Y. (2005). Preimplantation genetics: Improving access to stem cell therapy. Annals of the New York Academy of Sciences, 1054, 223–227.PubMedGoogle Scholar
  63. 63.
    Pickering, S. J., Braude, P. R., Patel, M., Burns, C. J., Trussler, J., Bolton, V., et al. (2003). Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reproductive Biomedicine Online, 7, 353–364.PubMedGoogle Scholar
  64. 64.
    Stephenson, E. L., Mason, C., & Braude, P. R. (2009). Preimplantation genetic diagnosis as a source of human embryonic stem cells for disease research and drug discovery. BJOG: An International Journal of Obstetrics and Gynaecology, 116, 158–165.Google Scholar
  65. 65.
    Avitzour, M., Mor-Shaked, H., Yanovsky-Dagan, S., Aharoni, S., Altarescu, G., Renbaum, P., et al. (2014). FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports, 3, 699–706.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Eiges, R., Urbach, A., Malcov, M., Frumkin, T., Schwartz, T., Amit, A., et al. (2007). Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos. Cell Stem Cell, 1, 568–577.PubMedGoogle Scholar
  67. 67.
    Gerhardt, J., Tomishima, M. J., Zaninovic, N., Colak, D., Yan, Z., Zhan, Q., et al. (2014). The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells. Molecular Cell, 53, 19–31.PubMedGoogle Scholar
  68. 68.
    Mor-Shaked, H., & Eiges, R. (2016). Modeling fragile X syndrome using human pluripotent stem cells. Genes, 7, 77.PubMedCentralGoogle Scholar
  69. 69.
    Bar-Nur, O., Caspi, I., & Benvenisty, N. (2012). Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. Journal of Molecular Cell Biology, 4, 180–183.PubMedGoogle Scholar
  70. 70.
    Bhattacharyya, A., & Zhao, X. (2016). Human pluripotent stem cell models of fragile X syndrome. Molecular and Cellular Neurosciences, 73, 43–51.PubMedGoogle Scholar
  71. 71.
    Brick, D. J., Nethercott, H. E., Montesano, S., Banuelos, M. G., Stover, A. E., Schutte, S. S., et al. (2014). The autism Spectrum disorders stem cell resource at Children’s Hospital of Orange County: Implications for disease modeling and drug discovery. Stem Cells Translational Medicine, 3, 1275–1286.PubMedPubMedCentralGoogle Scholar
  72. 72.
    de Esch, C. E., Ghazvini, M., Loos, F., Schelling-Kazaryan, N., Widagdo, W., Munshi, S. T., et al. (2014). Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Reports, 3, 548–555.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Doers, M. E., Musser, M. T., Nichol, R., Berndt, E. R., Baker, M., Gomez, T. M., et al. (2014). iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells and Development, 23, 1777–1787.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Halevy, T., Czech, C., & Benvenisty, N. (2015). Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Reports, 4, 37–46.PubMedGoogle Scholar
  75. 75.
    Kaufmann, M., Schuffenhauer, A., Fruh, I., Klein, J., Thiemeyer, A., Rigo, P., et al. (2015). High-throughput screening using iPSC-derived neuronal progenitors to identify compounds counteracting epigenetic gene silencing in fragile X syndrome. Journal of Biomolecular Screening, 20, 1101.PubMedGoogle Scholar
  76. 76.
    Urbach, A., Bar-Nur, O., Daley, G. Q., & Benvenisty, N. (2010). Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell, 6, 407–411.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Brykczynska, U., Pecho-Vrieseling, E., Thiemeyer, A., Klein, J., Fruh, I., Doll, T., et al. (2016). CGG repeat-induced FMR1 silencing depends on the expansion size in human iPSCs and neurons carrying unmethylated full mutations. Stem Cell Reports, 7, 1059–1071.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., et al. (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature, 504, 282–286.PubMedGoogle Scholar
  79. 79.
    Bakker, C. E., de Diego Otero, Y., Bontekoe, C., Raghoe, P., Luteijn, T., Hoogeveen, A. T., et al. (2000). Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Experimental Cell Research, 258, 162–170.PubMedGoogle Scholar
  80. 80.
    Devys, D., Lutz, Y., Rouyer, N., Bellocq, J. P., & Mandel, J. L. (1993). The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genetics, 4, 335–340.PubMedGoogle Scholar
  81. 81.
    Willemsen, R., Oostra, B. A., Bassell, G. J., & Dictenberg, J. (2004). The fragile X syndrome: From molecular genetics to neurobiology. Mental Retardation and Developmental Disabilities Research Reviews, 10, 60–67.PubMedGoogle Scholar
  82. 82.
    Arbab, T., Battaglia, F. P., Pennartz, C. M. A., & Bosman, C. A. (2018). Abnormal hippocampal theta and gamma hypersynchrony produces network and spike timing disturbances in the Fmr1-KO mouse model of fragile X syndrome. Neurobiology of Disease, 114, 65–73.PubMedGoogle Scholar
  83. 83.
    Cea-Del Rio, C. A., & Huntsman, M. M. (2014). The contribution of inhibitory interneurons to circuit dysfunction in fragile X syndrome. Frontiers in Cellular Neuroscience, 8, 245.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Goel, A., Cantu, D. A., Guilfoyle, J., Chaudhari, G. R., Newadkar, A., Todisco, B., et al. (2018). Impaired perceptual learning in a mouse model of fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nature Neuroscience, 21, 1404–1411.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Nomura, T., Musial, T. F., Marshall, J. J., Zhu, Y., Remmers, C. L., Xu, J., et al. (2017). Delayed maturation of fast-spiking interneurons is rectified by activation of the TrkB receptor in the mouse model of fragile X syndrome. The Journal of Neuroscience, 37, 11298–11310.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wen, T. H., Afroz, S., Reinhard, S. M., Palacios, A. R., Tapia, K., Binder, D. K., et al. (2018). Genetic reduction of matrix metalloproteinase-9 promotes formation of Perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cerebral Cortex, 28, 3951–3964.PubMedGoogle Scholar
  87. 87.
    Yang, Y. M., Arsenault, J., Bah, A., Krzeminski, M., Fekete, A., Chao, O. Y., et al. (2018). Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain. Molecular Psychiatry.  https://doi.org/10.1038/s41380-018-0240-0
  88. 88.
    Cheng, C., Lau, S. K., & Doering, L. C. (2016). Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model. Molecular Brain, 9, 74.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Gholizadeh, S., Halder, S. K., & Hampson, D. R. (2015). Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain. Brain Research, 1596, 22–30.PubMedGoogle Scholar
  90. 90.
    Higashimori, H., Morel, L., Huth, J., Lindemann, L., Dulla, C., Taylor, A., et al. (2013). Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Human Molecular Genetics, 22, 2041–2054.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Higashimori, H., Schin, C. S., Chiang, M. S., Morel, L., Shoneye, T. A., Nelson, D. L., et al. (2016). Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in vivo. The Journal of Neuroscience, 36, 7079–7094.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Hodges, J. L., Yu, X., Gilmore, A., Bennett, H., Tjia, M., Perna, J. F., et al. (2017). Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome. Biological Psychiatry, 82, 139–149.PubMedGoogle Scholar
  93. 93.
    Jacobs, S., Cheng, C., & Doering, L. C. (2012). Probing astrocyte function in fragile X syndrome. Results and Problems in Cell Differentiation, 54, 15–31.PubMedGoogle Scholar
  94. 94.
    Jacobs, S., Nathwani, M., & Doering, L. C. (2010). Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression. BMC Neuroscience, 11, 132.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Pacey, L. K., & Doering, L. C. (2007). Developmental expression of FMRP in the astrocyte lineage: Implications for fragile X syndrome. Glia, 55, 1601–1609.PubMedGoogle Scholar
  96. 96.
    Wang, L., Wang, Y., Zhou, S., Yang, L., Shi, Q., Li, Y., et al. (2016). Imbalance between glutamate and GABA in Fmr1 knockout astrocytes influences neuronal development. Genes (Basel), 7, 45.Google Scholar
  97. 97.
    Giampetruzzi, A., Carson, J. H., & Barbarese, E. (2013). FMRP and myelin protein expression in oligodendrocytes. Molecular and Cellular Neurosciences, 56, 333–341.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Pacey, L. K., Xuan, I. C., Guan, S., Sussman, D., Henkelman, R. M., Chen, Y., et al. (2013). Delayed myelination in a mouse model of fragile X syndrome. Human Molecular Genetics, 22, 3920–3930.PubMedGoogle Scholar
  99. 99.
    Green, T., Barnea-Goraly, N., Raman, M., Hall, S. S., Lightbody, A. A., Bruno, J. L., et al. (2015). Specific effect of the fragile-X mental retardation-1 gene (FMR1) on white matter microstructure. The British Journal of Psychiatry, 207, 143.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Villalon-Reina, J., Jahanshad, N., Beaton, E., Toga, A. W., Thompson, P. M., & Simon, T. J. (2013). White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, fragile X or turner syndrome as evidenced by diffusion tensor imaging. NeuroImage, 81, 441–454.PubMedGoogle Scholar
  101. 101.
    Kim, D. S., et al. (2014). Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front Cell Neurosci, 8, 109.Google Scholar
  102. 102.
    Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Hu, B. Y., Du, Z. W., & Zhang, S. C. (2009). Differentiation of human oligodendrocytes from pluripotent stem cells. Nature Protocols, 4, 1614–1622.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Hu, B. Y., Weick, J. P., Yu, J., Ma, L. X., Zhang, X. Q., Thomson, J. A., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107, 4335–4340.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Krencik, R., Weick, J. P., Liu, Y., Zhang, Z. J., & Zhang, S. C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. National Biotechnology, 29, 528–534.Google Scholar
  106. 106.
    Li, X. J., Du, Z. W., Zarnowska, E. D., Pankratz, M., Hansen, L. O., Pearce, R. A., et al. (2005). Specification of motoneurons from human embryonic stem cells. Nature Biotechnology, 23, 215–221.PubMedGoogle Scholar
  107. 107.
    Li, X. J., Hu, B. Y., Jones, S. A., Zhang, Y. S., Lavaute, T., Du, Z. W., et al. (2008). Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells, 26, 886–893.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Li, X. J., & Zhang, S. C. (2006). In vitro differentiation of neural precursors from human embryonic stem cells. Methods of Molecular Biology, 331, 169–177.Google Scholar
  109. 109.
    Liu, Y., Liu, H., Sauvey, C., Yao, L., Zarnowska, E. D., & Zhang, S. C. (2013a). Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nature Protocols, 8, 1670–1679.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Liu, Y., Weick, J. P., Liu, H., Krencik, R., Zhang, X., Ma, L., et al. (2013b). Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nature Biotechnology, 31, 440–447.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12, 559–572.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., et al. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12, 573–586.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., et al. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience, 8, 288–296.PubMedGoogle Scholar
  114. 114.
    Yan, Y., Yang, D., Zarnowska, E. D., Du, Z., Werbel, B., Valliere, C., et al. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23, 781–790.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Yuan, F., Fang, K. H., Cao, S. Y., Qu, Z. Y., Li, Q., Krencik, R., et al. (2015). Efficient generation of region-specific forebrain neurons from human pluripotent stem cells under highly defined condition. Scientific Reports, 5, 18550.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19, 1129–1133.PubMedGoogle Scholar
  117. 117.
    Drouin-Ouellet, J., Lau, S., Brattas, P. L., Rylander Ottosson, D., Pircs, K., Grassi, D. A., et al. (2017). REST suppression mediates neural conversion of adult human fibroblasts via microRNA-dependent and -independent pathways. EMBO Molecular Medicine, 9, 1117–1131.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Drouin-Ouellet, J., Pircs, K., Barker, R. A., Jakobsson, J., & Parmar, M. (2017). Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: What have we learned? Frontiers in Neuroscience, 11, 530.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78, 785–798.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Boland, M. J., Nazor, K. L., Tran, H. T., Szucs, A., Lynch, C. L., Paredes, R., et al. (2017). Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome. Brain, 140, 582–598.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Telias, M., Segal, M., & Ben-Yosef, D. (2013). Neural differentiation of fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Developmental Biology, 374, 32–45.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Sheridan, S. D., et al. (2011). Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS.One., 6(10), e26203.Google Scholar
  125. 125.
    Guo, W., Allan, A. M., Zong, R., Zhang, L., Johnson, E. B., Schaller, E. G., et al. (2011). Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nature Medicine, 17, 559–565.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Guo, W., Murthy, A. C., Zhang, L., Johnson, E. B., Schaller, E. G., Allan, A. M., et al. (2012). Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Human Molecular Genetics, 21, 681–691.PubMedGoogle Scholar
  127. 127.
    Guo, W., et al. (2015). Fragile X Proteins FMRP and FXR2P Control Synaptic GluA1 Expression and Neuronal Maturation via Distinct Mechanisms. Cell Rep, 11(10), 1651–1666.Google Scholar
  128. 128.
    Sunamura, N., Iwashita, S., Enomoto, K., Kadoshima, T., & Isono, F. (2018). Loss of the fragile X mental retardation protein causes aberrant differentiation in human neural progenitor cells. Scientific Reports, 8, 11585.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Telias, M., Kuznitsov-Yanovsky, L., Segal, M., & Ben-Yosef, D. (2015). Functional deficiencies in fragile X neurons derived from human embryonic stem cells. The Journal of Neuroscience, 35, 15295–15306.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Telias, M., Segal, M., & Ben-Yosef, D. (2016). Immature responses to GABA in fragile X neurons derived from human embryonic stem cells. Frontiers in Cellular Neuroscience, 10, 121.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Zhang, Z., Marro, S. G., Zhang, Y., Arendt, K. L., Patzke, C., Zhou, B., et al. (2018). The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 10, eaar4338.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Niedringhaus, M., Dumitru, R., Mabb, A. M., Wang, Y., Philpot, B. D., Allbritton, N. L., et al. (2015). Transferable neuronal mini-cultures to accelerate screening in primary and induced pluripotent stem cell-derived neurons. Scientific Reports, 5, 8353.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Drouin, R., Angers, M., Dallaire, N., Rose, T. M., Khandjian, E. W., & Rousseau, F. (1997). Structural and functional characterization of the human FMR1 promoter reveals similarities with the hnRNP-A2 promoter region. Human Molecular Genetics, 6, 2051–2060.PubMedGoogle Scholar
  134. 134.
    Schwemmle, S. (1999). In vivo footprinting analysis of the FMR1 gene: Proposals concerning gene regulation in high-functioning males. American Journal of Medical Genetics, 84, 266–267.PubMedGoogle Scholar
  135. 135.
    Schwemmle, S., de Graaff, E., Deissler, H., Glaser, D., Wohrle, D., Kennerknecht, I., et al. (1997). Characterization of FMR1 promoter elements by in vivo-footprinting analysis. American Journal of Human Genetics, 60, 1354–1362.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Gheldof, N., Tabuchi, T. M., & Dekker, J. (2006). The active FMR1 promoter is associated with a large domain of altered chromatin conformation with embedded local histone modifications. Proceedings of the National Academy of Sciences of the United States of America, 103, 12463–12468.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Coffee, B., Zhang, F., Warren, S. T., & Reines, D. (1999). Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nature Genetics, 22, 98–101.PubMedGoogle Scholar
  138. 138.
    Coffee, B., Zhang, F., Ceman, S., Warren, S. T., & Reines, D. (2002). Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile X syndrome. American Journal of Human Genetics, 71, 923–932.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Pietrobono, R., Tabolacci, E., Zalfa, F., Zito, I., Terracciano, A., Moscato, U., et al. (2005). Molecular dissection of the events leading to inactivation of the FMR1 gene. Human Molecular Genetics, 14, 267–277.PubMedGoogle Scholar
  140. 140.
    Tabolacci, E., Moscato, U., Zalfa, F., Bagni, C., Chiurazzi, P., & Neri, G. (2008b). Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. European Journal of Human Genetics, 16, 1487–1498.PubMedGoogle Scholar
  141. 141.
    Kumari, D., & Usdin, K. (2014). Polycomb group complexes are recruited to reactivated FMR1 alleles in fragile X syndrome in response to FMR1 transcription. Human Molecular Genetics, 23, 6575.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Colak, D., Zaninovic, N., Cohen, M. S., Rosenwaks, Z., Yang, W. Y., Gerhardt, J., et al. (2014). Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science, 343, 1002–1005.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Smeets, H. J., Smits, A. P., Verheij, C. E., Theelen, J. P., Willemsen, R., van de Burgt, I., et al. (1995). Normal phenotype in two brothers with a full FMR1 mutation. Human Molecular Genetics, 4, 2103–2108.PubMedGoogle Scholar
  144. 144.
    Gholizadeh, S., Arsenault, J., Xuan, I. C., Pacey, L. K., & Hampson, D. R. (2014). Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology, 39, 3100–3111.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Zeier, Z., Kumar, A., Bodhinathan, K., Feller, J. A., Foster, T. C., & Bloom, D. C. (2009). Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome. Gene Therapy, 16, 1122–1129.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Chiurazzi, P., Pomponi, M. G., Willemsen, R., Oostra, B. A., & Neri, G. (1998). In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Human Molecular Genetics, 7, 109–113.PubMedGoogle Scholar
  147. 147.
    Pietrobono, R., Pomponi, M. G., Tabolacci, E., Oostra, B., Chiurazzi, P., & Neri, G. (2002). Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Research, 30, 3278–3285.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Brendel, C., Mielke, B., Hillebrand, M., Gartner, J., & Huppke, P. (2013). Methotrexate treatment of FraX fibroblasts results in FMR1 transcription but not in detectable FMR1 protein levels. Journal of Neurodevelopmental Disorders, 5, 23.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Tabolacci, E., De Pascalis, I., Accadia, M., Terracciano, A., Moscato, U., Chiurazzi, P., et al. (2008a). Modest reactivation of the mutant FMR1 gene by valproic acid is accompanied by histone modifications but not DNA demethylation. Pharmacogenetics and Genomics, 18, 738–741.PubMedGoogle Scholar
  150. 150.
    Chiurazzi, P., Pomponi, M. G., Pietrobono, R., Bakker, C. E., Neri, G., & Oostra, B. A. (1999). Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Human Molecular Genetics, 8, 2317–2323.PubMedGoogle Scholar
  151. 151.
    Biacsi, R., Kumari, D., & Usdin, K. (2008). SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome. PLoS Genetics, 4, e1000017.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Kumari, D., Swaroop, M., Southall, N., Huang, W., Zheng, W., & Usdin, K. (2015). High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Translational Medicine, 4, 800–808.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Jang, S. W., Lopez-Anido, C., MacArthur, R., Svaren, J., & Inglese, J. (2012). Identification of drug modulators targeting gene-dosage disease CMT1A. ACS Chemical Biology, 7, 1205–1213.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Hunt, J. F. V. S., Li, M., Zhao, X., & Bhattacharyya, A. (2019). Using human neural progenitor cell models to conduct large-scale drug screens for neurological and psychiatric diseases. In D. Ben-Yosef & Y. Mayshar (Eds.), Fragile-X syndrome: Methods and protocols, methods in molecular biology. New York): Springer Science+Business Media, LLC, part of Springer Nature.Google Scholar
  155. 155.
    Li, M., Hunt, J. F. V. S., Bhattacharyya, A., & Zhao, X. (2019). One-step generation of seamless luciferase gene knockin using CRISPR/Cas9 genome editing in human pluripotent stem cells. In D. Ben-Yosef & Y. Mayshar (Eds.), Fragile-X syndrome: Methods and protocols, methods in molecular biology. New York: Springer Science+Business Media, LLC, part of Springer Nature.Google Scholar
  156. 156.
    Li, M., Zhao, H., Ananiev, G. E., Musser, M. T., Ness, K. H., Maglaque, D. L., et al. (2017). Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells, 35, 158–169.PubMedGoogle Scholar
  157. 157.
    Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Ma, K., Wang, J., Shen, B., Qiu, L., Huang, X., & Li, Z. (2014). Efficient targeting of FATS at a common fragile site in mice through TALEN-mediated double-hit genome modification. Biotechnology Letters, 36, 471–479.PubMedGoogle Scholar
  159. 159.
    Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: Progress, implications and challenges. Human Molecular Genetics, 23, R40–R46.PubMedGoogle Scholar
  160. 160.
    Park, C. Y., Halevy, T., Lee, D. R., Sung, J. J., Lee, J. S., Yanuka, O., et al. (2015). Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Reports, 13, 234–241.PubMedGoogle Scholar
  161. 161.
    Xie, N., Gong, H., Suhl, J. A., Chopra, P., Wang, T., & Warren, S. T. (2016). Reactivation of FMR1 by CRISPR/Cas9-mediated deletion of the expanded CGG-repeat of the fragile X chromosome. PLoS One, 11, e0165499.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, 1911.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Haenfler, J. M., Skariah, G., Rodriguez, C. M., Monteiro da Rocha, A., Parent, J. M., Smith, G. D., et al. (2018). Targeted reactivation of FMR1 transcription in fragile X syndrome embryonic stem cells. Frontiers in Molecular Neuroscience, 11, 282.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Balboa, D., Weltner, J., Eurola, S., Trokovic, R., Wartiovaara, K., & Otonkoski, T. (2015). Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Reports, 5, 448–459.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Liu, X. S., Wu, H., Krzisch, M., Wu, X., Graef, J., Muffat, J., et al. (2018). Rescue of Fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell, 172, 979–992.e976.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., et al. (2018). Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nature Biomedical Engineering, 2, 497–507.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Wagner, D. L., Amini, L., Wendering, D. J., Burkhardt, L.-M., Akyüz, L., Reinke, P., et al. (2018). High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nature Medicine, 25(2), 242–248.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Waisman CenterUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of NeuroscienceUniversity of Wisconsin-Madison, School of Medicine and Public HealthMadisonUSA
  3. 3.Department of Cell and Regenerative BiologyUniversity of Wisconsin-Madison, School of Medicine and Public HealthMadisonUSA

Personalised recommendations