Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism

  • Jason W. Lunden
  • Madel Durens
  • Jonathan Nestor
  • Robert F. Niescier
  • Kevin Herold
  • Cheryl Brandenburg
  • Yu-Chih Lin
  • Gene J. Blatt
  • Michael W. NestorEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 25)


Autism spectrum condition (ASC) is a complex set of behavioral and neurological responses reflecting a likely interaction between autism susceptibility genes and the environment. Autism represents a spectrum in which heterogeneous genetic backgrounds are expressed with similar heterogeneity in the affected domains of communication, social interaction, and behavior. The impact of gene-environment interactions may also account for differences in underlying neurology and wide variation in observed behaviors. For these reasons, it has been difficult for geneticists and neuroscientists to build adequate systems to model the complex neurobiology causes of autism. In addition, the development of therapeutics for individuals with autism has been painstakingly slow, with most treatment options reduced to repurposed medications developed for other neurological diseases. Adequately developing therapeutics that are sensitive to the genetic and neurobiological diversity of individuals with autism necessitates personalized models of ASC that can capture some common pathways that reflect the neurophysiological and genetic backgrounds of varying individuals. Testing cohorts of individuals with and without autism for these potentially convergent pathways on a scalable platform for therapeutic development requires large numbers of samples from a diverse population. To date, human induced pluripotent stem cells (iPSCs) represent one of the best systems for conducting these types of assays in a clinically relevant and scalable way. The discovery of the four Yamanaka transcription factors (OCT3/4, SOX2, c-Myc, and KLF4) [1] allows for the induction of iPSCs from fibroblasts [2], peripheral blood mononuclear cells (PBMCs, i.e. lymphocytes and monocytes) [3, 4], or dental pulp cells [5] that retain the original genetics of the individual from which they were derived [6], making iPSCs a powerful tool to model neurophysiological conditions. iPSCs are a readily renewable cell type that can be developed on a small scale for boutique-style proof-of-principle phenotypic studies and scaled to an industrial level for drug screening and other high-content assays. This flexibility, along with the ability to represent the true genetic diversity of autism, underscores the importance of using iPSCs to model neurophysiological aspects of ASC.


Phenotypic screening Brain organoid Multielectrode array Live-cell calcium imaging High-throughput imaging 



We would like to thank Dr. Rania Deranieh and Omotayo Oduwole for technical assistance. We also like to thank Dr. John Hussman and Elizabeth Benevides for comments and reviews of this manuscript.


  1. 1.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMedPubMedCentralGoogle Scholar
  3. 3.
    DeRosa, B. A., Belle, K. C., Thomas, B. J., Cukier, H. N., Pericak-Vance, M. A., Vance, J. M., et al. (2015). HVGAT-mCherry: A novel molecular tool for analysis of GABAergic neurons derived from human pluripotent stem cells. Molecular and Cellular Neurosciences, 68, 244–257.PubMedPubMedCentralGoogle Scholar
  4. 4.
    DeRosa, B. A., Van Baaren, J. M., Dubey, G. K., Lee, J. M., Cuccaro, M. L., Vance, J. M., et al. (2012). Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neuroscience Letters, 516, 9–14.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Griesi-Oliveira, K., et al. (2015). Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 20, 1350–1365.PubMedGoogle Scholar
  6. 6.
    Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M. S., Tomasini, L., et al. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492, 438–442.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Caiazzo, M., Giannelli, S., Valente, P., Lignani, G., Carissimo, A., Sessa, A., et al. (2015). Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports, 4, 25–36.PubMedGoogle Scholar
  8. 8.
    Gupta, N., Henry, R. G., Strober, J., Kang, S.-M., Lim, D. A., Bucci, M., et al. (2012). Neural stem cell engraftment and myelination in the human brain. Science Translational Medicine, 4, 155ra137.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J., & Zhang, S.-C. (2011). Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotechnology, 29, 528–534.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Heinrich, C., Blum, R., Gascón, S., Masserdotti, G., Tripathi, P., Sánchez, R., et al. (2010). Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biology, 8, e1000373.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim, D.-S., Ross, P. J., Zaslavsky, K., & Ellis, J. (2014). Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in Cellular Neuroscience, 8, 109.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., et al. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12, 573–586.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S. A., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9, 113–118.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu, M. L., Zang, T., Zou, Y., Chang, J. C., Gibson, J. R., Huber, K. M., et al. (2013). Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nature Communications, 4, 1–10.Google Scholar
  15. 15.
    Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Shi, Y., Kirwan, P., & Livesey, F. J. (2012a). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7, 1836–1846.PubMedGoogle Scholar
  17. 17.
    Karus, M., Blaess, S., & Brüstle, O. (2014). Self-organization of neural tissue architectures from pluripotent stem cells. The Journal of Comparative Neurology, 522, 2831–2844.PubMedGoogle Scholar
  18. 18.
    Pasca, S. P., Panagiotakos, G., & Dolmetsch, R. E. (2014). Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annual Review of Neuroscience, 37, 479–501.PubMedGoogle Scholar
  19. 19.
    Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19, 1129–1133.PubMedGoogle Scholar
  20. 20.
    Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Espuny-Camacho, I., Michelsen, K. A., Gall, D., Linaro, D., Hasche, A., Bonnefont, J., et al. (2013). Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron, 77, 440–456.PubMedGoogle Scholar
  22. 22.
    Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., et al. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proceedings of the National Academy of Sciences, 110, 20284–20289.Google Scholar
  23. 23.
    Krencik, R., & Zhang, S.-C. (2011). Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nature Protocols, 6, 1710–1717.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Maroof, A. M., Keros, S., Tyson, J. A., Ying, S.-W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12, 559–572.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Nestor, M. W., Jacob, S., Sun, B., Prè, D., Sproul, A. A., Hong, S. I., et al. (2015). Characterization of a subpopulation of developing cortical interneurons from human iPSCs within serum-free embryoid bodies. American Journal of Physiology. Cell Physiology, 308, C209–C219.PubMedGoogle Scholar
  26. 26.
    Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C., & Livesey, F. J. (2012b). Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature Neuroscience, 15, 477–486.PubMedGoogle Scholar
  27. 27.
    Woodard, C. M., et al. (2014). iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Reports, 9, 1173–1182.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Abbott, A. (2003). Biology’s new dimension. Nature, 424, 870–872.PubMedGoogle Scholar
  29. 29.
    Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3-D culture. Nature Methods, 12, 671–678.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kelava, I., & Lancaster, M. A. (2016). Stem cell models of human brain development. Cell Stem Cell, 18, 736–748.PubMedGoogle Scholar
  31. 31.
    Sasai, Y. (2013). Next-generation regenerative medicine: Organogenesis from stem cells in 3-D culture. Cell Stem Cell, 12, 520–530.PubMedGoogle Scholar
  32. 32.
    Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., et al. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience, 8, 288–296.PubMedGoogle Scholar
  33. 33.
    Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M., & Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnology, 21(2), 183–186.PubMedGoogle Scholar
  34. 34.
    Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., Van Den Ameele, J., et al. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature, 455, 351–357.PubMedGoogle Scholar
  35. 35.
    Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., et al. (2008). Self-organized formation of polarized cortical tissues from ESCS and its active manipulation by extrinsic signals. Cell Stem Cell, 3, 519–532.PubMedGoogle Scholar
  36. 36.
    Nestor, M. W., Phillips, A. W., Artimovich, E., Nestor, J. E., Hussman, J. P., & Blatt, G. J. (2016). Human inducible pluripotent stem cells and autism spectrum disorder: Emerging technologies. Autism Research, 9, 513–535.PubMedGoogle Scholar
  37. 37.
    Mariani, J., Vittoria, M., Palejev, D., Tomasini, L., Coppola, G., Szekely, A. M., et al. (2012). Modeling human cortical development in vitro using induced pluripotent stem cells. Proceedings of the National Academy of Sciences, 109, 12770–12775.Google Scholar
  38. 38.
    Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162, 375–390.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Phillips, A. W., Nestor, J. E., & Nestor, M. W. (2017). Developing HiPSC derived serum free embryoid bodies for the interrogation of 3-D stem cell cultures using physiologically relevant assays. Journal of Visualized Experiments, 125, 55799.Google Scholar
  40. 40.
    Nestor, M. W., Paull, D., Jacob, S., Sproul, A. A., Alsaffar, A., Campos, B. A., et al. (2013). Differentiation of serum-free embryoid bodies from human induced pluripotent stem cells into networks. Stem Cell Research, 10, 454–463.PubMedGoogle Scholar
  41. 41.
    Lancaster, M. A., & Knoblich, J. A. (2014). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9, 2329–2340.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lancaster, M. A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Qian, X., et al. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165, 1238–1254.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Marchetto, M. C. N., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527–539.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Flaherty, E., Deranieh, R. M., Artimovich, E., Lee, I. S., Siegel, A. J., Levy, D. L., et al. (2017). Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 3, 35.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Derosa, B. A., El Hokayem, J., Artimovich, E., Garcia-Serje, C., Phillips, A. W., Van Booven, D., et al. (2018). Convergent pathways in idiopathic autism revealed by time course transcriptomic analysis of patient-derived neurons. Scientific Reports, 8, 1–15.Google Scholar
  47. 47.
    Kolevzon, A. (2013). A pilot treatment study of insulin-like growth factor-1 (IGF-1) in autism spectrum disorder. Retrieved from
  48. 48.
    Tang, X., Kim, J., Zhou, L., Wengert, E., Zhang, L., Wu, Z., et al. (2016). KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proceedings of the National Academy of Sciences, 113, 751–756.Google Scholar
  49. 49.
    Marchetto, M. C., et al. (2017). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 22, 820–835.Google Scholar
  50. 50.
    Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C., & Nicoll, R. A. (1998). Postsynaptically silent synapses in single neuron cultures. Neuron, 21, 1443–1451.PubMedGoogle Scholar
  51. 51.
    Flames, N., Pla, R., Gelman, D. M., Rubenstein, J. L. R., Puelles, L., & Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. The Journal of Neuroscience, 27, 9682–9695.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kanatani, S., Yozu, M., Tabata, H., & Nakajima, K. (2008). COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream. The Journal of Neuroscience, 28, 13582–13591.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Gonchar, Y., & Burkhalter, A. (1999). Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. Cerebral Cortex, 9, 683–696.PubMedGoogle Scholar
  54. 54.
    Anderson, S. A., Kaznowski, C. E., Horn, C., Rubenstein, J. L. R., & McConnell, S. K. (2002). Distinct origins of neocortical projection neurons and interneurons in vivo. Cerebral Cortex, 12, 702–709.PubMedGoogle Scholar
  55. 55.
    Valcanis, H., & Tan, S.-S. (2003). Layer specification of transplanted interneurons in developing mouse neocortex. The Journal of Neuroscience, 23, 5113–5122.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Wichterle, H., Garcia-Verdugo, J. M., Herrera, D. G., & Alvarez-Buylla, A. (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neuroscience, 2, 461–466.PubMedGoogle Scholar
  57. 57.
    Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.PubMedGoogle Scholar
  58. 58.
    Hussman, J. P. (2007). The gap between intention and action: Altered connectivity and GABA-mediated synchrony in autism. In E. B. Torres & C. Whyatt (Eds.), Autism: The movement sensing perspective. New York: CRC Press.Google Scholar
  59. 59.
    Selten, M., van Bokhoven, H., & Nadif Kasri, N. (2018). Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research, 7, 23.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lee, E., Lee, J., & Kim, E. (2017). Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biological Psychiatry, 81, 838–847.PubMedGoogle Scholar
  61. 61.
    Cao, W., Lin, S., Qiang, X., Lan, D. Y., Yang, Q., Ying, Z. M., et al. (2018). Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron, 97, 1394.PubMedGoogle Scholar
  62. 62.
    Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., et al. (2015). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(2), 395–405. Scholar
  63. 63.
    Rojas, D. C., Maharajh, K., Teale, P., & Rogers, S. J. (2008). Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry, 8, 1–9.Google Scholar
  64. 64.
    Wilson, T. W., Rojas, D. C., Reite, M. L., Teale, P. D., & Rogers, S. J. (2007). Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192–197.PubMedGoogle Scholar
  65. 65.
    Jacob, J. (2016). Cortical interneuron dysfunction in epilepsy associated with autism spectrum disorders. Epilepsia, 57, 182–193.PubMedGoogle Scholar
  66. 66.
    Zhu, Y. (2004). Chandelier cells control excessive cortical excitation: characteristics of Whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. The Journal of Neuroscience, 24, 5101–5108.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Boutin, M. E., Voss, T. C., Titus, S. A., Cruz-Gutierrez, K., Michael, S., & Ferrer, M. (2018). A high-throughput imaging and nuclear segmentation analysis protocol for cleared 3-D culture models. Scientific Reports, 8, 1–14.Google Scholar
  68. 68.
    Esner, M., Meyenhofer, F., & Bickle, M. (2018). Live-cell high content screening in drug development. Methods in Molecular Biology, 1683, 149–164.PubMedGoogle Scholar
  69. 69.
    Smietana, K., Siatkowski, M., & Møller, M. (2016). Trends in clinical success rates. Nature Reviews. Drug Discovery, 15, 379–380.PubMedGoogle Scholar
  70. 70.
    Chen, Y. Y., Silva, P. N., Syed, A. M., Sindhwani, S., Rocheleau, J. V., & Chan, W. C. W. (2016). Clarifying intact 3-D tissues on a microfluidic chip for high-throughput structural analysis. Proceedings of the National Academy of Sciences, 113, 14915–14920.Google Scholar
  71. 71.
    Giuliano, K. A., DeBiasio, R. L., Dunlay, R. T., Gough, A., Volosky, J. M., Zock, J., et al. (1997). High-content screening: A new approach to easing key bottlenecks in the drug discovery process. Journal of Biomolecular Screening, 2, 249–259.Google Scholar
  72. 72.
    Egner, A., & Hell, S. (2006). Aberrations in confocal and multi-photon fluorescence microscopy induced by refractive index mismatch. In J. B. Pawley (Ed.), Handbook of biological confocal microscopy (pp. 404–413). New York: Springer.Google Scholar
  73. 73.
    Pampaloni, F., Ansari, N., & Stelzer, E. H. K. (2013). High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and Tissue Research, 352, 161–177.PubMedGoogle Scholar
  74. 74.
    Boutin, M. E., & Hoffman-Kim, D. (2015). Application and assessment of optical clearing methods for imaging of tissue-engineered neural stem cell spheres. Tissue Engineering. Part C, Methods, 21, 292–302.PubMedGoogle Scholar
  75. 75.
    Jacques, S. L. (2013). Optical properties of biological tissues: A review. Physics in Medicine and Biology, 58(11), R37–R61.PubMedGoogle Scholar
  76. 76.
    Morris, R. G. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. The Journal of Neuroscience, 9, 3040–3057.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Honoré, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., et al. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science, 241, 701–703.PubMedGoogle Scholar
  78. 78.
    Crossman, A. R., Walker, R. J., & Woodruff, G. N. (1973). Picrotoxin antagonism of gamma-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. British Journal of Pharmacology, 49, 696–698.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Zoghbi, H. Y., & Bear, M. F. (2012). Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives in Biology, 4, a009886.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.PubMedGoogle Scholar
  81. 81.
    Cooke, S. F. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedGoogle Scholar
  82. 82.
    Molnar, E. (2011). Long-term potentiation in cultured hippocampal neurons. Seminars in Cell & Developmental Biology, 22, 506–513.Google Scholar
  83. 83.
    Musleh, W., Bi, X., Tocco, G., Yaghoubi, S., & Baudry, M. (1997). Glycine-induced long-term potentiation is associated with structural and functional modifications of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptors. Proceedings of the National Academy of Sciences of the United States of America, 94, 9451–9456.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Li, L. J., Hu, R., Lujan, B., Chen, J., Zhang, J. J., Nakano, Y., et al. (2016). Glycine potentiates AMPA receptor function through metabotropic activation of GluN2A-containing NMDA receptors. Frontiers in Molecular Neuroscience, 9, 102. Scholar
  85. 85.
    Shew, W. L., Bellay, T., & Plenz, D. (2010). Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity. Journal of Neuroscience Methods, 192, 75–82.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499(7458), 295–300. Scholar
  87. 87.
    Sproul, A. A., Jacob, S., Pre, D., Kim, S. H., Nestor, M. W., Navarro-Sobrino, M., et al. (2014). Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One, 9(1), e84547.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Artimovich, E., Jackson, R. K., Kilander, M. B. C., Lin, Y. C., & Nestor, M. W. (2017). PeakCaller: An automated graphical interface for the quantification of intracellular calcium obtained by high-content screening. BMC Neuroscience, 18(1), 72.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jason W. Lunden
    • 1
  • Madel Durens
    • 1
  • Jonathan Nestor
    • 1
  • Robert F. Niescier
    • 1
  • Kevin Herold
    • 2
  • Cheryl Brandenburg
    • 1
  • Yu-Chih Lin
    • 1
  • Gene J. Blatt
    • 1
  • Michael W. Nestor
    • 1
    Email author
  1. 1.Program in NeuroscienceHussman Institute for AutismBaltimoreUSA
  2. 2.Program in Molecular MedicineUniversity of Maryland, School of MedicineBaltimoreUSA

Personalised recommendations