Advertisement

Biophotonic Therapy Induced Photobiomodulation

  • Deirdre Edge
  • Mikkel Schødt
  • Michael Canova Engelbrecht NielsenEmail author
Chapter
  • 21 Downloads

Abstract

Biophotonics—the interdisciplinary field marrying photonics and biology—has had a profound impact on modern medicine, supporting the diagnosis, management and treatment of disease. Learning from evolutionary mechanisms of photon absorption by chromophores coupled with our growing knowledge of light–tissue interactions has uncovered a niche area of phototherapy—photobiomodulation (PBM). PBM is the capacity of non-ionizing forms of light to induce photochemical and photophysical biological reactions. Now widely applied in various fields to restore function, stimulate and aid healing, its role in medical and cosmetic dermatology is dominating. In this chapter, we discuss the current knowledge of PBM and introduce a novel induction of PBM using fluorescent light energy (FLE). Research supports the capacity of FLE to modulate immune and connective cell function—supporting an anti-inflammatory and healing effect. It is currently used clinically as a stand-alone treatment for inflammatory skin conditions, acne vulgaris and rosacea, as well as offering adjunct support to more invasive technologies and rejuvenating the skin. Further exploration underpinning its unique mechanism of action will enlighten future dermatological practice and beyond.

Keywords

Fluorescent light energy Chromophore Photobiomodulation Photobiological Absorption Anti-inflammatory Phototherapy Biophotonic Immunomodulation 

References

  1. 1.
    Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94(2):199–212.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng. 2017;1:0008.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Grzybowski A, Sak J, Pawlikowski J. A brief report on the history of phototherapy. Clin Dermatol. 2016;34(5):532–7.PubMedGoogle Scholar
  4. 4.
    Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother. 1968;9(5):621–6.Google Scholar
  5. 5.
    Anders JJ, Lanzafame RJ, Arany PR. Low-levelf light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33(4):183–4.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41–52.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hamblin MR, de Sousa MVP, Agrawal T. Handbook of low-level laser therapy. New York, NY: Pan Stanfrod; 2016.Google Scholar
  8. 8.
    Smith KC. Laser and led photobiology. Laser Ther. 2010;19(2):72–8.Google Scholar
  9. 9.
    Smith KC. Basic photochemistry. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2014. http://www.photobiology.info/.
  10. 10.
    Antonie V, Olaf R. Basic photophysics. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2014. http://www.photobiology.info/.
  11. 11.
    Hamblin MR, Huang Y-Y, Heiskanen V. Non-mammalian hosts and photobiomodulation: do all life-forms respond to light? Photochem Photobiol. 2018;13Google Scholar
  12. 12.
    Nowicka B, Kruk J. Powered by light: phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186–187:99–118.PubMedGoogle Scholar
  13. 13.
    The light fantastic. Nat Chem Biol. 2014;10:483.Google Scholar
  14. 14.
    Hubel DH. Eye, brain, and vision [Internet] (Scientific American library series). Henry Holt and Company; 1995. https://books.google.ie/books?id=2Id9QgAACAAJ.
  15. 15.
    Musio C, Santillo S. Non-visual photoreception in invertebrates. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2009. http://www.photobiology.info/.
  16. 16.
    Hoang N, Schleicher E, Kacprzak S, Bouly J-P, Picot M, Wu W, et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 2008;6(7):e160.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mignon C, Botchkareva NV, Uzunbajakava NE, Tobin DJ. Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion. Exp Dermatol. 2016;25(10):745–9.PubMedGoogle Scholar
  18. 18.
    Jurgens M, Mayerhofer T, Jurgen P. Handbook of biophotonics: basics and techniques, vol. 1. Hoboken, NJ: Wiley; 2011. p. 1–38.Google Scholar
  19. 19.
    Mahendran P. All in a flash of light: phototherapy throughout time. In: Proceedings of the European Academy of Dermatology and Venerology; 2018 Sep 12–16; Paris; Abstract number P1167.Google Scholar
  20. 20.
    Lim HW, Silpa-archa N, Amadi U, Menter A, Van Voorhees AS, Lebwohl M. Phototherapy in dermatology: a call for action. J Am Acad Dermatol. 2015;72:1078–80.Google Scholar
  21. 21.
    Stern RS. Psoralen and ultraviolet a light therapy for psoriasis. N Engl J Med. 2007;357(7):682–90.Google Scholar
  22. 22.
    Hamblin MR. Mechanisms of low level light therapy [Internet]. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2013. http://www.photobiology.info/.
  23. 23.
    Chung H, Dai T, Sharma S, Huang Y-Y, Carroll J, Hamblin M. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33.PubMedGoogle Scholar
  24. 24.
    Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532–5.PubMedGoogle Scholar
  25. 25.
    Jalili A. Chromophore gel-assisted phototherapy. J für Ästhetische Chir. 2018;20:1–5.Google Scholar
  26. 26.
    Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–37.PubMedPubMedCentralGoogle Scholar
  27. 27.
    de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):348–64.Google Scholar
  28. 28.
    Gajinov Z, Matić M, Prćić S, Đuran V. Optičke osobine ljudske kože [Optical properties of the human skin]. Serbian J Dermatol Venerol. 2010;2(4):131–6.Google Scholar
  29. 29.
    Huang Y-Y, Mroz P, Hamblin MR. Basic photomedicine [Internet]. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2009. http://www.photobiology.info/.
  30. 30.
    Jeronimo R, Moraes MN, de Assis LVM, Ramos BC, Rocha T, Castrucci AM d L. Thermal stress in Danio rerio: a link between temperature, light, thermo-TRP channels, and clock genes. J Therm Biol. 2017;68(Pt A):128–38.PubMedGoogle Scholar
  31. 31.
    Pennisi E. Opsins: not just for eyes. Science. 2013;339(6121):754–5.PubMedGoogle Scholar
  32. 32.
    Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. Opsin expression in human epidermal skin. Photochem Photobiol. 2015;91(1):117–23.PubMedGoogle Scholar
  33. 33.
    Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med. 2018;Google Scholar
  34. 34.
    Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49(1):1–17.PubMedGoogle Scholar
  35. 35.
    Heiskanen V, Hamblin MR. Photobiomodulation: lasers: vs. light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003–17.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Terakita A. The opsins. Genome Biol. 2005;6(3):1–9.Google Scholar
  37. 37.
    Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58–62.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Karu TI, Pyatibrat LV, Afanasyeva NI. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol. 80(2):366–72.Google Scholar
  39. 39.
    Fluoresence and fluoresence applications. Integrated DNA technologies. 2011.Google Scholar
  40. 40.
    Schaefer PM, Kalinina S, Rueck A, Von Arnim CAF. NADH auto fluorescence—a marker on its way to boost bioenergetic research. Cytometry A. 95(1):34–46.Google Scholar
  41. 41.
    Croce AC, Bottiroli G. Autofluorescence spectroscopy for monitoring metabolism in animal cells and tissues. Methods Mol Biol. 2017;1560:15–43.PubMedGoogle Scholar
  42. 42.
    Edge D, Mellergaard M, Dam-Hansen C, Corell DD, Devemy E, Jaworska J, et al. Fluorescent light energy: the future for treatment of inflammatory skin conditions? J Clin Aesthet Dermatol. 2019;12(5):E61–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008;27(4):227–38.PubMedGoogle Scholar
  44. 44.
    Pillai S, Cornell M, Christian O. Skin physiology pertinent to cosmetic dermatology. In: Cosmetic dermatology, products and procedures: John Ciley and Sons Ltd; 2010. p. 3–12.Google Scholar
  45. 45.
    Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43(9):2465–78.PubMedGoogle Scholar
  46. 46.
    Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, et al. Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36–44.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Elman M, Lebzelter J. Light therapy in the treatment of acne vulgaris. Dermatol Surg. 2004;30(2 Pt 1):139–46.PubMedGoogle Scholar
  48. 48.
    Hamilton FL, Car J, Lyons C, Car M, Layton A, Majeed A. Laser and other light therapies for the treatment of acne vulgaris: systematic review. Br J Dermatol. 2009;160(6):1273–85.PubMedGoogle Scholar
  49. 49.
    Shnitkind E, Yaping E, Geen S, Shalita AR, Lee W-L. Anti-inflammatory properties of narrow-band blue light. J Drugs Dermatol. 2006;5(7):605–10.PubMedGoogle Scholar
  50. 50.
    de Vasconcelos Catao MHC, Nonaka CFW, de Albuquerque RLCJ, Bento PM, de Oliveira Costa R. Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci. 2015;30(1):421–8.PubMedGoogle Scholar
  51. 51.
    Sadick NS, Karcher C, Palmisano L. Cosmetic dermatology of the aging face. Clin Dermatol. 2009;27(3 SUPPL):S3–12.Google Scholar
  52. 52.
    Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 2009;129(12):2751–9.PubMedGoogle Scholar
  53. 53.
    Lee SY, Park K-H, Choi J-W, Kwon J-K, Lee DR, Shin MS, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different tre. J Photochem Photobiol B Biol. 2007;88(1):51–67.Google Scholar
  54. 54.
    Nikolis A, Bernstein S, Kinney B, Scuderi N, Rastogi S, Sampalis JS. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of KLOX-001 gel formulation with KLOX light-emitting diode light on facial rejuvenation. Clin Cosmet Investig Dermatol. 2016;9:115–25.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Koceva I, Rümmelein B, Gerber PA, Edge D, Nielsen MCE. Fluorescent light energy a new therapeutic approach to effectively treating acne conglobata and hidradenitis suppurativa. Clin Case Rep. 2019;00:1–4.Google Scholar
  56. 56.
    Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G, et al. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol. 2001;117(5):1218–24.PubMedGoogle Scholar
  57. 57.
    Lynch B, Bonod-Bidaud C, Ducourthial G, Affagard JS, Bancelin S, Psilodimitrakopoulos S, et al. How aging impacts skin biomechanics: a multiscale study in mice. Sci Rep. 2017;7(1):1–10.Google Scholar
  58. 58.
    Sannino M, Lodi G, Dethlefsen MW, Nistico SP, Cannarozzo G, Canova Engelbrecht Nielsen M. Fluorescent light energy: treating rosacea subtypes 1, 2, and 3. Clin Case Rep. 2018;00:1–6.Google Scholar
  59. 59.
    Fox L, Csongradi C, Aucamp M, Du Plessis J, Gerber M. Treatment modalities for acne. Molecules. 2016;21(8):1–20.Google Scholar
  60. 60.
    Barolet D. Photobiomodulation in dermatology: harnessing light from visible to near infrared. Med Res Arch. 2018;6(1).Google Scholar
  61. 61.
    Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol. 2003;35(1):17–24.Google Scholar
  62. 62.
    Goldberg DJ, Russell BA. Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris. J Cosmet Laser Ther. 2006;8(2):71–5.PubMedGoogle Scholar
  63. 63.
    Lee SY, You CE, Park MY. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med. 2007;39(2):180–8.PubMedGoogle Scholar
  64. 64.
    Antoniou C, Dessinioti C, Sotiriadis D, Kalokasidis K, Kontochristopoulos G, Petridis A, et al. A multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int J Dermatol. 2016;55(12):1321–8.PubMedGoogle Scholar
  65. 65.
    Nikolis A, Fauverghe S, Scapagnini G, Sotiriadis D, Kontochristopoulos G, Petridis A, et al. An extension of a multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int J Dermatol. 2018;57(1):94–103.PubMedGoogle Scholar
  66. 66.
    Mahendran A, Wong XL, Kao S, Sebaratnam DF. Treatment of erlotinib-induced acneiform eruption with chromophore gel-assisted phototherapy. Photodermatol Photoimmunol Photomed. 2019;35(3):190–2.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zheng Q. Editorial: at the crossroad between inflammation and skin aging. Inflamm Allergy Drug Targets. 2014;13(3):151–2.PubMedGoogle Scholar
  68. 68.
    Houh YK, Kim KE, Park HJ, Cho D. Roles of erythroid differentiation regulator 1 (Erdr1) on inflammatory skin diseases. Int J Mol Sci. 2016;17(12):1–10.Google Scholar
  69. 69.
    Hamblin MR, R Hamblin M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337–61.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 2017;4(2):39–53.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Sauder DN. The role of epidermal cytokines in inflammatory skin diseases. J Invest Dermatol. 1990;95(5 Suppl):27S–8S.PubMedGoogle Scholar
  72. 72.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406.PubMedGoogle Scholar
  74. 74.
    Young DA, Lowe LD, Clark SC. Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. J Immunol. 1990;145(2):607–15.PubMedGoogle Scholar
  75. 75.
    Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nowarski R, Jackson R, Flavell RA. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell. 2017;168(3):362–75.PubMedGoogle Scholar
  77. 77.
    Banno T, Gazel A, Blumenberg M. Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem. 2004;279(31):32633–42.PubMedGoogle Scholar
  78. 78.
    Hernández MV, Meineri M, Sanmartí R. Skin lesions and treatment with tumor necrosis factor alpha antagonists Lesiones cutáneas y terapia biológica con antagonistas del factor de necrosis tumoral. Reum Clin. 2013;9(1):53–61.Google Scholar
  79. 79.
    Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2(4):288–94.PubMedGoogle Scholar
  80. 80.
    Tan J, Almeida LMC, Bewley A, Cribier B, Dlova NC, Gallo R, et al. Updating the diagnosis, classification and assessment of rosacea: recommendations from the global ROSacea COnsensus (ROSCO) panel. Br J Dermatol. 2017;176(2):431–8.PubMedGoogle Scholar
  81. 81.
    Weinkle AP, Doktor V, Emer J. Update on the management of rosacea. Plast Surg Nurs. 2015;35(4):184–202.PubMedGoogle Scholar
  82. 82.
    Abokwidir M, Feldman SR. Rosacea management. Ski Appendage Disord. 2016;2(1–2):26–34.Google Scholar
  83. 83.
    Braun SA, Gerber PA. A photoconverter gel-assisted blue light therapy for the treatment of rosacea. Int J Dermatol. 2017;56(12):1489–90.PubMedGoogle Scholar
  84. 84.
    Liu RC, Makhija M, Wong XL, Sebaratnam DF. Treatment of granulomatous rosacea with chromophore gel-assisted phototherapy. Photodermatol Photoimmunol Photomed. 2018;2019:1–2.Google Scholar
  85. 85.
    Gallo RL, Granstein RD, Kang S, Mannis M, Steinhoff M, Tan J, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78(1):148–55.PubMedGoogle Scholar
  86. 86.
    Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Ablon G. Phototherapy with light emitting diodes: treating a broad range of medical and aesthetic conditions in dermatology. J Clin Aesthet Dermatol. 2018;11(2):21–7.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Scarcella G, Dethlefsen M, Nielsen M. Treatment of solar lentigines using a combination of picosecond laser and biophotonic treatment. Clin Case Rep. 2018;00:1–3.Google Scholar
  89. 89.
    Fitzpatrick RE, Goldman MP, Satur NM, Tope WD. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol. 1996;132(4):395–402.PubMedGoogle Scholar
  90. 90.
    Gerber PA, Scarcella G, Edge D, Nielsen MCE. Biophotonic pre-treatment enhances the targeting of senile lentigines with a 694 nm QS-ruby laser. Photodermatol Photoimmunol Photomed. 2019;Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Deirdre Edge
    • 1
  • Mikkel Schødt
    • 1
  • Michael Canova Engelbrecht Nielsen
    • 1
    Email author
  1. 1.Department of Research and DevelopmentFB DermatologyBallerupDenmark

Personalised recommendations