Advertisement

Photorejuvenation: Concepts, Practice, Perspectives

  • Marco Dal CantonEmail author
Chapter
  • 22 Downloads

Abstract

Photorejuvenation is an all-purpose term that can be appealing to patients looking for finest results with negligible downtime, enticed by the alleged healing potential of lasers and high energy light technologies.

In the real world, photorejuvenation can be attained when targeting specific tissue chromophores, as hemoglobins in facial redness, poikiloderma and telangiectasia with vascular lasers and IPLs, melanin in mottled dyspigmentation and age spots with pigment specific light sources, and even tissue water when using near IR high energy wavelenghts, we can observe a textural improvement as a side (enticing) effect of the light-tissue interaction and a product of the healing process.

Keywords

Photorejuvenation Photoaging Skin rejuvenation Laser IPL Broadband lights Selective photothermolysis Extended photothermolysis Rosacea Age spots Textural changes Wrinkles 

References

  1. 1.
    Aesthetic lasers market analysis by application (IPL laser treatment, laser skin resurfacing, noninvasive tightening, laser-assisted lipoplasty, laser hair removal), and segment forecasts to 2024. Report ID: GVR-1-68038-078-1. https://www.grandviewresearch.com/industry-analysis/aesthetic-lasers-market. Accessed 8 Sept 2018.
  2. 2.
    American Society of Plastic Surgeons. 2017 plastic surgery statistics report. ASPS National clearinghouse of plastic surgery procedural statistics. https://www.plasticsurgery.org/documents/News/Statistics/2017/plastic-surgery-statistics-full-report-2017.pdf. Accessed 1 Sept 2018.
  3. 3.
    Chernoff WG, Cramer H. Rejuvenation of the skin surface: laser exfoliation. Facial Plast Surg. 1996;12(2):135–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Bitter PH. Noninvasive rejuvenation of photo damaged skin using serial, full face intense pulsed light treatment. Derm Surg. 2000;26(9):835–42.CrossRefGoogle Scholar
  5. 5.
    DeHoratius DM, Dover JS. Nonablative tissue remodeling and photorejuvenation. Clin Dermatol. 2007;25(5):474–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41–52.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hedelund L, Due E, Bjerring P, et al. Skin rejuvenation using intense pulsed light: a randomized controlled split-face trial with blinded response evaluation. Arch Dermatol. 2006;142(8):985–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Zelickson B, Kilmer SL, Bernstein E. Pulsed dye laser therapy for sun damaged skin. Lasers Surg Med. 1999;25:220–36.CrossRefGoogle Scholar
  9. 9.
    Bjerring P, Clement M, Heickendorff L, et al. Selective non-ablative wrinkle reduction by laser. J Cutan Laser Ther. 2000;2:9–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson RR, Parrish JA. Selective photothermolysis. Science. 1983;220:524–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Atshuler GB, Anderson RR, Manstein D, et al. Extended theory of selective photothermolysis. Laser Surg Med. 2001;29(5):416–32.CrossRefGoogle Scholar
  12. 12.
    Bjerring P, Clement M, Heickendorff L, et al. Dermal collagen production following irradiation by a dye laser and broadband light source. J Cosmet Laser Ther. 2001;3:39–43.Google Scholar
  13. 13.
    Wu D, Zhou B, Xu Y, Yin Z, Luo D. Impact of intense pulsed light irradiation on cultured primary fibroblasts and a vascular endothelial cell line. Exp Ther Med. 2012;4(4):669–74.Google Scholar
  14. 14.
    Dal Canton M, Modolo E. Objective and subjective clinical effects of a Nd: YAG 532 nm frequency-doubled long-pulsed diode pumped laser system on photoaging pf the face: a retrospective study on color signs, texture and rhyitds. J Cosmet Laser Ther. 2004;6(4):209–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Galeckas KJ, Ross EV, Uebelhoer NS. A pulsed dye laser with a 10-mm beam diameter and a pigmented lesion window for purpura-free photorejuvenation. Dermatol Surg. 2008;34:308–13.Google Scholar
  16. 16.
    Hedelund L, Due E, Bjerring P, Wulf HC, Haedersdal M. Skin rejuvenation using intense pulsed light: a randomized controlled split-face trial with blinded response evaluation. Arch Dermatol. 2006;142(8):985–90.Google Scholar
  17. 17.
    Handler MZ, Bloom BS, Goldberg DJ. IPL vs PDL in treatment of facial erythema: a split-face study. J Cosmet Dermatol. 2017;16:450–3.Google Scholar
  18. 18.
    Alam M, Voravutinon N, Warycha M, Whiting D, Nodzenski M, et al. Comparative effectiveness of nonpurpuragenic 595-nm pulsed dye laser and microsecond 1064-nm neodymium:yttrium-aluminum-garnet laser for treatment of diffuse facial erythema: a double-blind randomized controlled trial. J Am Acad Dermatol. 2013;69(3):438–43.Google Scholar
  19. 19.
    Jørgensen GF, Hedelund L, Hædersdal M. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: a randomized split-face trial with blinded response evaluation. Lasers Surg Med. 2008;40:293–9.Google Scholar
  20. 20.
    Butler EG, McClellan SD, Ross EV. Split treatment of photodamaged skin with KTP 532 nm laser with 10 mm handpiece versus IPL: a cheek-to-cheek comparison. Lasers Surg Med. 2006;38:124–8.Google Scholar
  21. 21.
    Labadie JG, Krunic AL. Long pulsed dye laser with a back-to-back double-pulse technique and compression for the treatment of epidermal pigmented lesions. Lasers Surg Med. 2019;51(2):136–40. Google Scholar
  22. 22.
    Kono T, Manstein D, Chan HH, Nozaki M, Anderson RR. Q-switched ruby versus long-pulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med. 2006;38(2):94–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Kono T, Groff WF, Sakurai H, Takeuchi M, Yamaki T, Soejima K, et al. Comparison study of intense pulsed light versus a long-pulse pulsed dye laser in the treatment of facial skin rejuvenation. Ann Plast Surg. 2007;59(5):479–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Guitera P, Pellacani G, Crotty KA, et al. The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face. J Invest Dermatol. 2010;130(8):2080–91.Google Scholar
  25. 25.
    Agozzino M, Russo T, Ardigò M, et al. Challenging facial pigmented lesions: values and limits of confocal microscopy. Dermatol Pract Concept. 2018;8(3):188–90.Google Scholar
  26. 26.
    Sarma N, Chakraborty S, Poojary SA, Rathi S, Kumaran S, Nirmal B, et al. Evidence-based review, grade of recommendation, and suggested treatment recommendations for melasma. Indian Dermatol Online J. 2017;8(6):406–42.Google Scholar
  27. 27.
    Ortonne JP, Pandya AG, Lui H, Hexsel D. Treatment of solar lentigines. J Am Acad Dermatol. 2006;54(5):S262–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Hellwig S, Schönermark M, Raulin C. Treatment of vascular malformations and pigment disorders of the face and neck by pulsed dye laser, Photoderm VL and Q-switched ruby laser. Laryngorhinootologie. 1995;74(10):635–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Ho SG, Chan NP, Yeung CK, Shek SY, Kono T, Chan HH. A cmanagement of freckles and lentigines using four different pigment lasers on Asian skin. J Cosmet Laser Ther. 2012;14(2):74–80.Google Scholar
  30. 30.
    Winstanley D, Blalock T, Houghton N, Ross EV. Treatment of benign pigmented lesions using a long-pulse alexandrite laser. J Drugs Dermatol. 2012;11(11):1327–30.PubMedGoogle Scholar
  31. 31.
    Kilmer SL, Wheeland RG, Goldberg DJ, Anderson RR. Treatment of epidermal pigmented lesions with the frequency-doubled Q-switched Nd:YAG laser. A controlled, single-impact, dose-response, multicenter trial. Arch Dermatol. 1994;130(12):1515–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Taylor CR, Anderson RR. Treatment of benign pigmented epidermal lesions by Q-switched ruby laser. Int J Dermatol. 1993;32(12):908–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang CC, Chen CK. Effect of spot size and fluence on Q-switched alexandrite laser treatment for pigmentation in Asians: a randomized, double-blinded, split-face comparative trial. J Dermatolog Treat. 2012;23(5):333–8.Google Scholar
  34. 34.
    Jun HJ, Cho SH, Lee JD, Kim HS. A split-face, evaluator-blind randomized study on the early effects of Q-switched Nd:YAG laser plus Er:YAG micropeel (combined therapy) versus Q-switched Nd:YAG alone in light solar lentigines in Asians. Lasers Med Sci. 2014;29(3):1153–8.Google Scholar
  35. 35.
    Goldman MP, Weiss RA, Weiss MA. Intense pulsed light as a nonablative approach to photoaging. Dermatol Surg. 2005;31(9 Pt 2):1179–87.Google Scholar
  36. 36.
    Tanaka Y, Tsunemi Y, Kawashima M. Objective assessment of intensive targeted treatment for solar lentigines using intense pulsed light with wavelengths between 500 and 635 nm. Lasers Surg Med. 2016;48(1):30–5.Google Scholar
  37. 37.
    Vachiramon V, Iamsumang W, Triyangkulsri K. Q-switched double frequency Nd:YAG 532-nm nanosecond laser vs. double frequency Nd:YAG 532-nm picosecond laser for the treatment of solar lentigines in Asians. Lasers Med Sci. 2018;33(9):1941–47.Google Scholar
  38. 38.
    Dover JS, Smoller BR, Stern RS, Rosen S, Arndt KA. Low-fluence carbon dioxide laser irradiation of lentigines. Arch Dermatol. 1988;124(8):1219–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Fitzpatrick RE, Goldman MP, Ruiz-Esparza J. Clinical advantage of the CO2 laser superpulsed mode. Treatment of verruca vulgaris, seborrheic keratoses, lentigines, and actinic cheilitis. J Dermatol Surg Oncol. 1994;20(7):449–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Vachiramon V, Panmanee W, Techapichetvanich T, Chanprapaph K. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians. Lasers Surg Med. 2016;48(4):354–9.Google Scholar
  41. 41.
    Khatri KA. Ablation of cutaneous lesions using an erbium:YAG laser. J Cosmet Laser Ther. 2003;5(3–4):150–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Ross EV, Sajben FP, Hsia J, Barnette D, Miller CH, McKinlay JR. Nonablative skin remodeling: selective dermal heating with mid-infrared laser and contact cooling combination. Lasers Surg Med. 2000;26:186–95.CrossRefPubMedGoogle Scholar
  43. 43.
    Nestor MS, Goldberg DJ, Goldman NP, Weiss RA, Riegel DS. Learn about non-ablative skin rejuvenation techniques using intense pulsed light, including conventional and photodynamic skin rejuvenation. Skin Aging. 2003;5:68–74.Google Scholar
  44. 44.
    Kelly KM, Nelson JS, Lask GP, Geronemus RG, et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol. 1999;135(6):691–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Doshi SN, Alster TS. 1450 nm long-pulsed diode laser for nonablative skin rejuvenation. Dermatol Surg. 2005;31(9 Pt 2):1223–6.PubMedGoogle Scholar
  46. 46.
    Lupton JR, Williams CM, Alster TS. Nonablative laser skin resurfacing using a 1540 nm erbium glass laser: a clinical and histologic analysis. Dermatol Surg. 2002;28(9):833–5.PubMedGoogle Scholar
  47. 47.
    Paithankar DY, Ross EV, Saleh BA, Blair MA, Graham BS. Acne treatment with a 1,450 nm wavelength laser and cryogen spray cooling. Lasers Surg Med. 2002;31(2):106–14.CrossRefPubMedGoogle Scholar
  48. 48.
    Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhong H, Ma W, Cai D, Sun Q. A comparison of Q switched 1064 nm Nd: YAG laser and intense pulsed light in the nonablative rejuvenation on rat model. J Cosmet Las Ther. 2013;15(3):126–32.CrossRefGoogle Scholar
  50. 50.
    Berlin AL, Dudelzak J, Hussain M, Phelps R, Goldberg DJ. Evaluation of clinical, microscopic, and ultrastructural changes after treatment with a novel Q-switched Nd:YAG laser. J Cosmet Laser Ther. 2008;10(2):76–9.Google Scholar
  51. 51.
    Gold MH, Sensing W, Biron J. Fractional Q-switched 1,064-nm laser for the treatment of photoaged-photodamaged skin. J Cosmet Laser Ther. 2014;16(2):69–76.Google Scholar
  52. 52.
    Hilton S, Heise H, Buhren BA, Schrumpf H, Bölke E, Gerber PA. Treatment of melasma in Caucasian patients using a novel 694-nm Q-switched ruby fractionallaser. Eur J Med Res. 2013;18:43.Google Scholar
  53. 53.
    Xu TH, Li YH, Chen JZ, Gao XH, Chen HD. Treatment of infraorbital dark circles using 694-nm fractional Q-switched ruby laser. Lasers Med Sci. 2016;31(9):1783–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Roh M, Goo B, Jung J, Chung H, Chung K. Treatment of enlarged pores with the quasi long-pulsed versus Q-switched 1064 nm Nd:YAG lasers: a split-face, comparative, controlled study. Laser Ther. 2011;20(3):175–80.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chung H, Goo B, Lee H, Roh M, Chung K. Enlarged pores treated with a combination of Q-switched and micropulsed 1064 nm Nd:YAG laser with and without topical carbon suspension: a simultaneous split-face trial. Laser Ther. 2011;20(3):181–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wattanakrai P, Rojhirunsakool S, Pootongkam S. Split-face comparison of long-pulse-duration neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser alone and combination long-pulse and Q-switched Nd:YAG 1,064-nm laser with carbon photoenhancer lotion for the treatment of enlarged pores in Asian women. Dermatol Surg. 2010;36(11):1672–80.Google Scholar
  57. 57.
    Roh MR, Chung HJ, Chung KY. Effects of various parameters of the 1064 nm Nd:YAG laser for the treatment of enlarged facial pores. J Dermatolog Treat. 2009;20(4):223–8.Google Scholar
  58. 58.
    Munavalli G. A split-face assessment of the synergistic potential of sequential Q-switched Nd:YAG laser and 1565 nm fractional nonablative laser treatment for facial rejuvenation in Fitzpatrick skin type II–V patients. J Drugs Dermatol. 2016;15(11):1335–42.PubMedGoogle Scholar
  59. 59.
    Lee MW. Combination visible and infrared lasers for skin rejuvenation. Semin Cutan Med Surg. 2002 Dec;21(4):288–300.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee MW. Combination 532-nm and 1064-nm lasers for noninvasive skin rejuvenation and toning. Arch Dermatol. 2003;139(10):1265–76.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee JH, Park SR, Jo JH, Park SY, Seo YK, Kim SM. Comparison of epidermal/dermal damage between the long-pulsed 1064 nm Nd:YAG and 755 nm alexandrite lasers under relatively high fluence conditions: quantitative and histological assessments. Photomed Laser Surg. 2014;32(7):386–93.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Knight JM, Kautz G. Sequential facial skin rejuvenation with intense pulsed light and non-ablative fractionated laser resurfacing in Fitzpatrick skin type II–IV patients: a prospective multicenter analysis. Lasers Surg Med. 2019 Feb;51(2):141–9.Google Scholar
  63. 63.
    Tollan CJ, MacLaren W, Mackay IR. Topical anaesthetic effects on skin vasculature with potential implications for laser treatment. Lasers Med Sci. 2016;31(4):611–7.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Dermatology and VenereologyOrdine Medici e Chirurghi Provincia di BellunoBellunoItaly
  2. 2.Private practiceQderm-BellunoItaly

Personalised recommendations