Multispectral and Hyperspectral Imaging for Skin Acquisition and Analysis

  • Lou GevauxEmail author
  • Jean Luc Perrot
  • Mathieu Hébert


Multispectral and hyperspectral imaging are imaging modalities that collect more physical information than conventional color imaging, allowing detailed study of material properties. Applied to skin, these imaging methods enable noninvasive, pixel-by-pixel surface measurements, making them promising tools for in vivo skin study. In particular, skin spectral images can be analyzed using physics-based models, or artificial intelligence combined with databases. A typical application is the estimation of information such as melanin concentration and total blood volume fraction from a model-based approximation of skin structure and composition and a model of light–skin interaction.


Multispectral imaging Hyperspectral imaging In vivo Skin reflectance Optical properties Chromophore maps 


  1. 1.
    Hébert M, Hersch RD, Emmel P. Fundamentals of optics and radiometry for color reproduction. In: Kriss M, editor. Handbook of digital imaging. Chichester, UK: John Wiley & Sons, Ltd; 2014. p. 1–57.Google Scholar
  2. 2.
    Liang H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Applied Physics A. 2012;106(2):309–23.CrossRefGoogle Scholar
  3. 3.
    Cucci C, Delaney JK, Picollo M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc Chem Res. 2016;49(10):2070–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Lorente D, et al. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Tech. 2012;5(4):1121–42.CrossRefGoogle Scholar
  5. 5.
    Manley M. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem Soc Rev. 2014;43(24):8200–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19(1):010901.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Igarashi T, Nishino K, Nayar SK. The appearance of human skin: a survey. Foun Trends® Comput Graph Vis. 2007;3(1):1–95.CrossRefGoogle Scholar
  8. 8.
    Calin MA, et al. Characterization of burns using hyperspectral imaging technique—A preliminary study. Burns. 2015;41(1):118–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Tomatis S, et al. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys Med Biol. 2005;50(8):1675–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Madooei A, et al. Hyperspectral image processing for detection and grading of skin erythema. Presented at SPIE Medical Imaging, 24 February 2017, Orlando, Florida, United States; 2017.Google Scholar
  11. 11.
    Randeberg LL, Larsen ELP, Svaasand LO. Characterization of vascular structures and skin bruises using hyperspectral imaging, image analysis and diffusion theory. J Biophotonics. 2009;3(1–2):53–65.CrossRefGoogle Scholar
  12. 12.
    Seroul P, et al. Model-based skin pigment cartography by high-resolution hyperspectral imaging. J Imaging Sci Technol. 2016;60(6):60404–1.CrossRefGoogle Scholar
  13. 13.
    Gevaux L, et al. Three-dimensional hyperspectral imaging: a new method for human face acquisition. Electron Imaging. 2018;2018(8):152-1–152-10.CrossRefGoogle Scholar
  14. 14.
    Garini Y, Young IT, McNamara G. Spectral imaging: principles and applications. Cytometry A. 2006;69A(8):735–47.CrossRefGoogle Scholar
  15. 15.
    Hagen N, Kudenov MW. Review of snapshot spectral imaging technologies. Opt Eng. 2013;52(9):090901.CrossRefGoogle Scholar
  16. 16.
    Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Magnain C, Elias M, Frigerio J-M. Skin color modeling using the radiative transfer equation solved by the auxiliary function method. J Opt Soc Am A. 2007;24(8):2196.CrossRefGoogle Scholar
  20. 20.
    Kubelka P, Munk F. An article on optics of paint layers. Z. Tech. Phys. 1931;16:593–609.Google Scholar
  21. 21.
    Kubelka P. New contributions to the optics of intensely light-scattering materials part II: Nonhomogeneous layers∗. J Opt Soc Am. 1954;44(4):330.CrossRefGoogle Scholar
  22. 22.
    Hébert M, Emmel P. Two-flux and multiflux matrix models for colored surfaces. In: Kriss M, editor. Handbook of digital imaging. Chichester, UK: John Wiley & Sons, Ltd; 2015. p. 1–45.Google Scholar
  23. 23.
    Wyszecki G, Stiles WS. Color science: concepts and methods, quantitative data and formulae. 2nd ed. New York: Wiley; 1982.Google Scholar
  24. 24.
    Kupetsky EA, Ferris LK. The diagnostic evaluation of MelaFind multi-spectral objective computer vision system. Expert Opin Med Diagn. 2013;7(4):405–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate SchoolSaint-EtienneFrance
  2. 2.Department of DermatologyUniversity Hospital of Saint EtienneSaint-EtienneFrance

Personalised recommendations