Advertisement

Systems-Based Design Architecture for Integrated Design of Materials, Products, and Associated Manufacturing Processes

  • Anand Balu NellippallilEmail author
  • Janet K. Allen
  • B. P. Gautham
  • Amarendra K. Singh
  • Farrokh Mistree
Chapter
  • 17 Downloads

Abstract

In this chapter, the requirements for the systems-based design architecture for the integrated design of materials, products, and associated manufacturing processes—“rendering conceptual materials design more systematic”, “providing systematic, domain-independent, goal-oriented and multiobjective decision support”—are addressed. The component of the systems-based design architecture developed in this chapter is a systematic, function-based approach for the integrated design of the product and material concepts. The steel manufacturing process chain example is used in Chaps. 5 and 6 for validation of this component of the systems-based design architecture. The systematic function-based approach is used for addressing the requirement for systematic model integration and information and information flow. A concept exploration framework and a goal-oriented, inverse design (GoID) method are developed to address the requirements of “systematic concept exploration” and “inverse design exploration”, respectively.

References

  1. Bras, B., & Mistree, F. (1993). Robust design using compromise decision support problems. Engineering Optimization, 21(3), 213–239.Google Scholar
  2. Chen, W., Allen, J. K., & Mistree, F. (1997). A robust concept exploration method for enhancing productivity in concurrent systems design. Concurrent Engineering, 5(3), 203–217.Google Scholar
  3. Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008). An inductive design exploration method for robust multiscale materials design. Journal of Mechanical Design, 130(3), 031402.Google Scholar
  4. Fonville, T. R., Nellippallil, A. B., Horstemeyer, M., Allen, J. K., & Mistree, F. (2019). A goal-oriented, inverse decision-based method for an American Football Helmet. ASME Design Automation Conference, Paper Number: IDETC2019-97388.Google Scholar
  5. Hodgson, P., & Gibbs, R. (1992). A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ International, 32(12), 1329–1338.Google Scholar
  6. Kern, P. C., Priddy, M. W., Ellis, B. D., & McDowell, D. L. (2017). pyDEM: A generalized implementation of the inductive design exploration method. Materials & Design, 134, 293–300.Google Scholar
  7. Kuziak, R., Cheng, Y.-W., Glowacki, M., & Pietrzyk, M. (1997). Modeling of the microstructure and mechanical properties of steels during thermomechanical processing. NIST Technical Note (USA), 1393, 72.Google Scholar
  8. Majta, J., Kuziak, R., Pietrzyk, M., & Krzton, H. (1996). Use of the computer simulation to predict mechanical properties of C-Mn steel, after thermomechanical processing. Journal of Materials Processing Technology, 60(1–4), 581–588.Google Scholar
  9. Messer, M. (2008). A systematic approach for integrated product, materials, and design-process design. Ph.D. Dissertation, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology.Google Scholar
  10. Ming, Z., Nellippallil, A. B., Yan, Y., Wang, G., Goh, C. H., Allen, J. K., & Mistree, F. (2018). PDSIDES—A knowledge-based platform for decision support in the design of engineering systems. Journal of Computing and Information Science in Engineering, 18(4).Google Scholar
  11. Mistree, F., Hughes, O. F., & Bras, B. (1993). Compromise decision support problem and the adaptive linear programming algorithm. Progress in Astronautics and Aeronautics, 150, 251–251.Google Scholar
  12. Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2016). A goal oriented, sequential process design of a multi-stage hot rod rolling system. ASME Design Automation Conference, Paper Number: DETC2016-59402.Google Scholar
  13. Nellippallil, A. B., Rangaraj, V., Allen, J. K., Mistree, F., Gautham, B., & Singh, A. K. (2017a). A decision-based design method to explore the solution space for microstructure after cooling stage to realize the end mechanical properties of hot rolled product. In Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017). Springer.Google Scholar
  14. Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2017b). A goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models in a hot rod rolling process chain. ASME Design Automation Conference, Paper Number: DETC2017‐67570.Google Scholar
  15. Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J. K., & Mistree, F. (2017c). A goal-oriented, sequential, inverse design method for the horizontal integration of a multistage hot rod rolling system. Journal of Mechanical Design, 139(3), 031403.Google Scholar
  16. Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2018a). Robust concept exploration of materials, products and associated manufacturing processes. ASME Design Automation Conference, Paper Number: DETC2018-85913.Google Scholar
  17. Nellippallil, A. B., Rangaraj, V., Gautham, B., Singh, A. K., Allen, J. K., & Mistree, F. (2018b). An inverse, decision-based design method for integrated design exploration of materials, products, and manufacturing processes. Journal of Mechanical Design, 140(11), 111403-111403-17.Google Scholar
  18. Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2019). Inverse Thermo-Mechanical Processing (ITMP) design of a steel rod during hot rolling process. ASME Design Automation Conference 2019, Paper Number: IDETC2019-97390.Google Scholar
  19. Nellippallil, A. B., Mohan, P., Allen, J. K., & Mistree, F. (2020). An inverse, decision-based design method for robust concept exploration. Journal of Mechanical Design, https://doi.org/10.1115/1.4045877.
  20. Olson, G. B. (1997). Computational design of hierarchically structured materials. Science, 277(5330), 1237–1242.Google Scholar
  21. Pahl, G., & Beitz, W. (1996). Engineering design: A systematic approach. London: Springer-Verlag.Google Scholar
  22. Pahl, G., & Beitz, W. (2013). Engineering design: A systematic approach. Springer Science & Business Media.Google Scholar
  23. Phadke, S., Pauskar, P., & Shivpuri, R. (2004). Computational modeling of phase transformations and mechanical properties during the cooling of hot rolled rod. Journal of Materials Processing Technology, 150(1), 107–115.Google Scholar
  24. Pietrzyk, M., Cser, L., & Lenard, J. (1999). Mathematical and physical simulation of the properties of hot rolled products. Elsevier.Google Scholar
  25. Simon, H. A. (2013). Administrative behavior. Simon and Schuster.Google Scholar
  26. Suh, N. P. (1990). The principles of design. Oxford University Press on Demand.Google Scholar
  27. Szykman, S., Racz, J. W., & Sriram, R. D. (1999). The representation of function in computer-based design. In ASME Design Engineering Technical Conferences, 11th International Conference on Design Theory and Methodology.Google Scholar
  28. Taguchi, G. (1986). Introduction to Quality Engineering. Dearborn, MI: Asian Productivity Organization, Distributed by the American Supplier Institute, Inc.Google Scholar
  29. Ullman, D. G. (1992). A taxonomy for mechanical design. Research in Engineering Design, 3(3), 179–189.Google Scholar
  30. Wang, R., Nellippallil, A. B., Wang, G., Yan, Y., Allen, J. K., & Mistree, F. (2018). Systematic design space exploration using a template-based ontological method. Advanced Engineering Informatics, 36, 163–177.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical and Civil EngineeringFlorida Institute of TechnologyMelbourneUSA
  2. 2.School of Industrial and Systems EngineeringUniversity of OklahomaNormanUSA
  3. 3.TCS Research, TRDDCTata Consultancy ServicesPuneIndia
  4. 4.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  5. 5.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA

Personalised recommendations