Models of Cell Motion and Tissue Growth

  • Benoît PerthameEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2260)


The mathematical description of cell movement, from the individual scale to the collective motion, is a rich and complex domain of biomathematics which leads to several types of questions and partial differential equations. For instance, bacteria move by run-and-tumble movement, which is well described, at the cell scale, by a kinetic equation in the phase coordinates. At the population scale, chemotactic effects lead to the famous parabolic Keller–Segel system, and the many improvements of it that have been addressed recently.

When considering living tissues, concepts issued from mechanics arise. Notions of pressure, phases, incompressibility are used in systems which carry the typical parabolic and hyperbolic characters of fluid mechanics. Their complexity is directly related to the details in the biological description and opens numerous mathematical questions which are poorly understood.

The various process involved in cell movements can be considered at the cell scale, at the population scale and, for tissues, at the organ scale. This leads to study singular perturbation problems of various types. For tumor growth, the tumor boundary can appear as a free boundary or as an internal layer.



The author has received partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740623) and partial funding from the ANR blanche project Kibord ANR-13-BS01-0004 funded by the French Ministry of Research.


  1. 1.
    J. Adler, Chemotaxis in bacteria. Science 153, 708–716 (1966)Google Scholar
  2. 2.
    A. Agosti, P.F. Antonietti, P. Ciarletta, M. Grasselli, M. Verani, A Cahn-Hilliard type equation with application to tumor growth dynamics. Math. Methods Appl. Sci. 40(18), 7598–7626 (2017)MathSciNetzbMATHGoogle Scholar
  3. 3.
    W. Alt, Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)MathSciNetzbMATHGoogle Scholar
  4. 4.
    H.W. Alt, E. DiBenedetto, Nonsteady flow of water and oil through inhomogeneous porous media. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(3), 335–392 (1985)Google Scholar
  5. 5.
    H.W. Alt, S. Luckhaus, A. Visintin, On nonstationary flow through porous media. Ann. Mat. Pura Appl. (4) 136, 303–316 (1984)Google Scholar
  6. 6.
    D.G. Aronson, P. Bénilan, Régularité des solutions de l’équation des milieux poreux dans R N. C. R. Acad. Sci. Paris Sér. A-B 288(2), A103–A105 (1979)zbMATHGoogle Scholar
  7. 7.
    C. Bardos, R. Santos, R. Sentis, Diffusion approximation and computation of the critical size. Trans. Amer. Math. Soc. 284(2), 617–649 (1984)MathSciNetzbMATHGoogle Scholar
  8. 8.
    N. Bellomo, M. Winkler, A degenerate chemotaxis system with flux limitation: maximally extended solutions and absence of gradient blow-up. Commun. Part. Diff. Equ. 42, 436–473 (2017)MathSciNetzbMATHGoogle Scholar
  9. 9.
    N. Bellomo, N.K. Li., P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 4, 593–646 (2008)Google Scholar
  10. 10.
    H.C. Berg, E. coli in Motion (Springer, Berlin, 2004)Google Scholar
  11. 11.
    M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth. Diff. Eqs. Appl. 4, 137–157 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    P. Biler, L. Corrias, J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. J. Math. Biol. 63(1), 1–32 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Equ. 2006(44), 1–32 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. Blanchet, J.A. Carrillo, P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differential Equations 35(2), 133–168 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    E. Bouin, V. Calvez, G. Nadin, Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts. Arch. Ration. Mech. Anal. 217(2), 571–617 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    N. Bournaveas, V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1871–1895 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    N. Bournaveas, V. Calvez, S. Gutièrrez, B. Perthame, Comm. Partial Diff. Equ. 33, 79–95 (2008)Google Scholar
  18. 18.
    M.P. Brenner, L.S. Levitov, E.O. Budrene, Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J. 74, 1677–1693 (1998)Google Scholar
  19. 19.
    F. Bubba, C. Pouchol, B. Perthame, M. Schmidtchen, Incompressible limit for a two species model of tissue growth in one space dimension. Arch. Ration. Mech. Anal. 236(2), 735–766 (2020)MathSciNetzbMATHGoogle Scholar
  20. 20.
    E.O. Budrene, H.C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)Google Scholar
  21. 21.
    H.M. Byrne, M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135(2),187–216 (1996)zbMATHGoogle Scholar
  22. 22.
    H. Byrne, D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    H. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–66 (2004)zbMATHGoogle Scholar
  24. 24.
    H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumor growth. Appl. Math. Lett. 16, 567–573 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    H. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003)zbMATHGoogle Scholar
  26. 26.
    V. Calvez, Chemotactic waves of bacteria at the mesoscale. arXiv:1607.00429 (2016)Google Scholar
  27. 27.
    V. Calvez, J.A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities. Proc. Amer. Math. Soc. 140(10), 3515–3530 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    V. Calvez, G. Raoul, C. Schmeiser, Confinement by biased velocity jumps: aggregation of Escherichia coli. Kinet. Relat. Models 8(4), 651–666 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    V. Calvez, B. Perthame, S. Yasuda, Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinet. Relat. Models 11(4), 891–909 (2018)MathSciNetzbMATHGoogle Scholar
  30. 30.
    C. Cancès, T.O. Gallouët, L. Monsaingeon, Incompressible immiscible multiphase flows in porous media: a variational approach. Anal. PDE 10(8), 1845–1876 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    J.A. Carrillo, S. Fagioli, F. Santambrogio, M. Schmidtchen, Splitting schemes and segregation in reaction cross-diffusion systems. SIAM J. Math. Anal. 50(5), 5695–5718 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases. In: Applied Mathematical Sciences, vol. 106 (Springer, New York, 1994), viii+347 pp.Google Scholar
  33. 33.
    F. Chalub, P.A. Markowich, B. Perthame, C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142, 123–141 (2004)MathSciNetzbMATHGoogle Scholar
  34. 34.
    C. Chatelain, T. Balois, P. Ciarletta, M. Ben Amar, Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13(11), 115013 (2011)Google Scholar
  35. 35.
    A. Chertock, A. Kurganov, X. Wang, Y. Wu, On a chemotaxis model with saturated chemotactic flux. Kinetic Related Models 5, 51–95 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    P. Ciarletta, L. Foret, M. Ben Amar, The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis. J. R. Soc. Interface 8(56), 345–368 (2011)Google Scholar
  37. 37.
    T. Colin, D. Bresch, E. Grenier, B. Ribba, O. Saut, Computational modeling of solid tumor growth: the avascular stage. SIAM J. Sci. Comput. 32(4), 2321–2344 (2010)MathSciNetzbMATHGoogle Scholar
  38. 38.
    T. Colin, A. Iollo, D. Lombardi, O. Saut, System identification in tumor growth modeling using semi-empirical eigenfunctions. Math. Models Methods Appl. Sci. 22(6), 1250003 (30 pp) (2012)Google Scholar
  39. 39.
    F. Cornelis, O. Saut, P. Cumsille, D. Lombardi, A. Iollo, J. Palussière, T. Colin, In vivo mathematical modeling of tumor growth from imaging date: Soon to come in the future? Diagn. Interv. Imaging 94(6), 593–600 (2013)Google Scholar
  40. 40.
    M.G. Crandall, M. Pierre, Regularizing effects for u t =  Δϕ(u). Trans. Am. Math. Soc. 274(1), 159–168 (1982)zbMATHGoogle Scholar
  41. 41.
    Y. Dolak, C. Schmeiser, Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)MathSciNetzbMATHGoogle Scholar
  42. 42.
    R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65, 35–75 (2012)MathSciNetzbMATHGoogle Scholar
  43. 43.
    R. Erban, H. Othmer, From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391 (2004)MathSciNetzbMATHGoogle Scholar
  44. 44.
    R. Erban, H. Othmer, Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885 (2007)MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. Escher, G. Simonett, Classical solutions for Hele-Shaw models with surface tension. Adv. Diff. Equ. 2(4), 619–642 (1997)MathSciNetzbMATHGoogle Scholar
  46. 46.
    A. Friedman, A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dynam. Systems Ser. B 4(1), 147–159 (2004)MathSciNetzbMATHGoogle Scholar
  47. 47.
    S. Frigeri, M. Grasselli, E. Rocca, On a diffuse interface model of tumor growth. European J. Appl. Math. 26, 215–243 (2015)MathSciNetzbMATHGoogle Scholar
  48. 48.
    H. Garcke, K.F. Lam, R. Nürnberg, E. Sitka, A multiphase Cahn-Hilliard-Darcy model for tumour growth with necrosis. Math. Models Methods Appl. Sci. 28(3), 525–577 (2018)MathSciNetzbMATHGoogle Scholar
  49. 49.
    R. Glassey, The Cauchy Problem in Kinetic Theory (SIAM, Philadelphia, 1996)zbMATHGoogle Scholar
  50. 50.
    I. Golding, Y. Kozlovsky, I. Cohen, E. Ben Jacob, Studies of bacterial branching growth using reaction–diffusion models for colonial development. Physica A 260, 510–554 (1998)Google Scholar
  51. 51.
    A. Goriely, The mathematics and mechanics of biological growth. In: Interdisciplinary Applied Mathematics, vol. 45 (Springer, New York, 2017)Google Scholar
  52. 52.
    P. Gwiazda, B. Perthame, A. Świerczewska-Gwiazda, A two species hyperbolic-parabolic model of tissue growth. Comm. Partial Diff. Equ. 44(12), 1605–1618 (2019)MathSciNetzbMATHGoogle Scholar
  53. 53.
    T. Hillen, H.G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775 (2000)MathSciNetzbMATHGoogle Scholar
  54. 54.
    T. Hillen, K.J. Painter. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetzbMATHGoogle Scholar
  55. 55.
    T. Hillen, A. Swan, The diffusion limit of transport equations in biology. In: Mathematical Models and Methods for Living Systems. Lecture Notes in Mathematics, vol. 2167, pp. 73–129. Fond. CIME/CIME Found. Subser (Springer, Cham, 2016)Google Scholar
  56. 56.
    S. Hoehme, D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20), 2641–2642 (2010)zbMATHGoogle Scholar
  57. 57.
    H.J. Hwang, K. Kang, A. Stevens, Global solutions of nonlinear transport equations for chemosensitive movement. SIAM. J. Math. Anal. 36, 1177–1199 (2005)MathSciNetzbMATHGoogle Scholar
  58. 58.
    F. James, N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics. Nonlinear Diff. Eq. Appl. 20(1), 101–127 (2013)MathSciNetzbMATHGoogle Scholar
  59. 59.
    T. Kawakami, Y. Sugiyama, Uniqueness theorem on weak solutions to the Keller-Segel system of degenerate and singular types. J. Diff. Equ. 260(5), 4683–4716 (2016)MathSciNetzbMATHGoogle Scholar
  60. 60.
    E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)zbMATHGoogle Scholar
  61. 61.
    I. Kim, N. Požár, Porous medium equation to Hele-Shaw flow with general initial density. Trans. Amer. Math. Soc. 370(2), 873–909 (2018)MathSciNetzbMATHGoogle Scholar
  62. 62.
    J.-G. Liu, A. Lorz, A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 643–652 (2011)MathSciNetzbMATHGoogle Scholar
  63. 63.
    T. Lorenzi, A. Lorz, B. Perthame, On interfaces between cell populations with different mobilities. Kinetic and Related Models 10(1), 299–311 (2016)MathSciNetzbMATHGoogle Scholar
  64. 64.
    J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R91 (2010)MathSciNetzbMATHGoogle Scholar
  65. 65.
    B. Mazzag, I. Zhulin, A. Mogilner, Model of bacterial band formation in aerotaxis. Biophys. J. 85, 3558–3574 (2003)Google Scholar
  66. 66.
    A. Mellet, B. Perthame, F. Quiros, A Hele-Shaw problem for tumor growth. J. Funct. Anal. 273, 306–3093 (2017)MathSciNetzbMATHGoogle Scholar
  67. 67.
    N. Mittal, E.O. Budrene, M.P. Brenner, A. Van Oudenaarden, Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA 100, 13259–13263 (2003)Google Scholar
  68. 68.
    M. Mizoguchi, M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system. Per. Commun.Google Scholar
  69. 69.
    J.D. Murray, Mathematical Biology, vol. 2, 2nd edn. (Springer, Berlin, 2002)Google Scholar
  70. 70.
    G. Nadin, B. Perthame, L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms. Interface Free Bound 10, 517–538 (2008)MathSciNetzbMATHGoogle Scholar
  71. 71.
    H. Othmer, S. Dunbar, W. Alt, Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)MathSciNetzbMATHGoogle Scholar
  72. 72.
    H.G. Othmer, T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 122–1250 (2002)MathSciNetzbMATHGoogle Scholar
  73. 73.
    B. Perthame, Math. Tools for Kinetic Equations. Bull. Am. Math. Soc. 41(2) (2004)Google Scholar
  74. 74.
    B. Perthame, Transport equations in biology. In: Frontiers in Mathematics (Birkhäuser Verlag, Basel, 2007), x+198 pp.Google Scholar
  75. 75.
    B. Perthame, N. Vauchelet, Z. Wang, The flux limited Keller-Segel system; properties and derivation from kinetic equations. Rev. Mat. Iberoam. 36(2), 357–386 (2020)MathSciNetzbMATHGoogle Scholar
  76. 76.
    B. Perthame, S. Yasuda, Stiff-response-induced instability for chemotactic bacteria and flux-limited Keller-Segel equation. Nonlinearity 31, 4065–4089 (2018)MathSciNetzbMATHGoogle Scholar
  77. 77.
    B. Perthame, F. Quiròs, J.-L. Vàzquez, The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212(1), 93–127 (2014)MathSciNetzbMATHGoogle Scholar
  78. 78.
    B. Perthame, M. Tang, N. Vauchelet, Traveling wave solution of the Hele–Shaw model of tumor growth with nutrient. Math. Models Methods Appl. Sci. 24(13), 2601–2626 (2014)MathSciNetzbMATHGoogle Scholar
  79. 79.
    B. Perthame, M. Tang, N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway. J. Math. Biol. 73(5), 1161–1178 (2016)MathSciNetzbMATHGoogle Scholar
  80. 80.
    A.B. Potapov, T. Hillen, Metastability in chemotaxis model. J. Dyn. Diff. Equat. 17(2), 293–330 (2005)MathSciNetzbMATHGoogle Scholar
  81. 81.
    L. Preziosi, A. Tosin, Multiphase modeling of tumor growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58, 625–656 (2009)MathSciNetzbMATHGoogle Scholar
  82. 82.
    L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Models Methods Appl. Sci. 21(9), 1901–1932 (2011)MathSciNetzbMATHGoogle Scholar
  83. 83.
    J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, F. Jülicher, Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. U. S. A. 107(49), 20863–20868 (2010)Google Scholar
  84. 84.
    B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier, J. P. Boissel, A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J. Theoret. Biol. 243(4), 532–541 (2006)MathSciNetGoogle Scholar
  85. 85.
    T. Roose, S. Chapman, P. Maini, Mathematical models of avascular tumour growth: a review. SIAM Rev. 49(2), 179–208 (2007)MathSciNetzbMATHGoogle Scholar
  86. 86.
    J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan, B. Perthame, Mathematical description of bacterial traveling pulses. PLoS Comput. Biol. 6(8), e1000890 (2010)Google Scholar
  87. 87.
    J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin, P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl. Acad. Sci. 108(39), 16235–16240 (2011)Google Scholar
  88. 88.
    J.A. Sherratt, M.A.J. Chaplain, A new mathematical model for avascular tumour growth. J. Math. Biol. 43(4), 291–312 (2001)MathSciNetzbMATHGoogle Scholar
  89. 89.
    G. Si, M. Tang, X. Yang, A pathway-based mean-field model for E. coli chemo-taxis: mathematical derivation and keller-segel limit. Multiscale Model Simul. 12(2), 907–926 (2014)Google Scholar
  90. 90.
    M.J. Tindall, P.K. Maini, S.L. Porter, J.P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol. 70, 1570–1607 (2008)MathSciNetzbMATHGoogle Scholar
  91. 91.
    J.-L. Vázquez, The porous medium equation. Mathematical theory. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, Oxford, 2007). ISBN:978-0-19-856903-9Google Scholar
  92. 92.
    M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 22(7), 2777–2793 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sorbonne Université, CNRS, Université de Paris, InriaLaboratoire Jacques-Louis LionsParisFrance

Personalised recommendations