Advertisement

Event Processing for Maritime Situational Awareness

  • Manolis Pitsikalis
  • Konstantina Bereta
  • Marios Vodas
  • Dimitris Zissis
  • Alexander ArtikisEmail author
Chapter
  • 23 Downloads

Abstract

Numerous illegal and dangerous activities take place at sea, including violations of ship emission rules, illegal fishing, illegal discharges of oil and garbage, smuggling, piracy and more. We present our efforts to combine two stream reasoning technologies for detecting such activities in real time: a formal, computational framework for composite maritime event recognition, based on the Event Calculus, and an industry-strong maritime anomaly detection service, capable of processing daily real-world data volumes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the datACRON and the INFORE projects, which have received funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreements No 687591 and No 825070.

References

  1. 1.
    Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)CrossRefGoogle Scholar
  2. 2.
    Chatzikokolakis, K., Zissis, D., Vodas, M., Spiliopoulos, G., Kontopoulos, I.: A distributed lightning fast maritime anomaly detection service. In: OCEANS 2019 - Marseille, June 2019, pp. 1–8 (2019)Google Scholar
  3. 3.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  4. 4.
    FAO. VMS for fishery vessels. http://www.fao.org/fishery/topic/18103/en. Accessed 15 May 2019
  5. 5.
    Greidanus, H., Alvarez, M., Santamaria, C., Thoorens, F.-X., Kourti, N., Argentieri, P.: The sumo ship detector algorithm for satellite radar images. Remote Sens. 9(3), 246 (2017)CrossRefGoogle Scholar
  6. 6.
    IMO. Technical characteristics for an automatic identification system using time division multiple access in the vhf maritime mobile frequency band. Tech. rep., ITU (2017)Google Scholar
  7. 7.
    IMO. Long-range identification and tracking system. Tech. rep., IMO (2018)Google Scholar
  8. 8.
    Improving maritime situational awareness through big data analytics, machine learning and artificial intelligence. Anomaly detection white paper, MarineTraffic Research (2019). https://www.marinetraffic.com/research/publication/anomaly-detection-white-paper/
  9. 9.
    Jousselme, A.-L., Ray, C., Camossi, E., Hadzagic, M., Claramunt, C., Bryan, K., Reardon, E., Ilteris, M.: Maritime use case description, h2020 datACRON project deliverable d5.1. http://datacron-project.eu/ (2016)
  10. 10.
    Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. Theory Pract. Log. Program. 16(5–6), 817–833 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems, 1st edn. Manning Publications Co., Shelter Island (2015)Google Scholar
  12. 12.
    Michelioudakis, E., Artikis, A., Paliouras, G.: Semi-supervised online structure learning for composite event recognition. Mach. Learn. 108(7) , 1085–1110 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Millefiori, L.M., Zissis, D., Cazzanti, L., Arcieri, G.: A distributed approach to estimating sea port operational regions from lots of AIS data. In: 2016 IEEE International Conference on Big Data, BigData 2016, Washington DC, 5–8 December 2016, pp. 1627–1632 (2016)Google Scholar
  14. 14.
    Mills, C.M., Townsend, S.E., Jennings, S., Eastwood, P.D., Houghton, C.A.: Estimating high resolution trawl fishing effort from satellite-based vessel monitoring system data. ICES J. Mar. Sci. 64(2), 248–255 (2007)CrossRefGoogle Scholar
  15. 15.
    Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)CrossRefGoogle Scholar
  16. 16.
    Pitsikalis, M., Artikis, A., Dreo, R., Ray, C., Camossi, E., Jousselme, A.: Composite event recognition for maritime monitoring. In: Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems, DEBS 2019, Darmstadt, 24–28 June 2019, pp. 163–174 (2019)Google Scholar
  17. 17.
    Santipantakis, G.M., Vlachou, A., Doulkeridis, C., Artikis, A., Kontopoulos, I., Vouros, G.A.: A stream reasoning system for maritime monitoring. In: 25th International Symposium on Temporal Representation and Reasoning, TIME 2018, Warsaw, 15–17 October 2018, pp. 20:1–20:17 (2018)Google Scholar
  18. 18.
    Terroso-Saenz, F., Valdes-Vela, M., Skarmeta-Gomez, A.F.: A complex event processing approach to detect abnormal behaviours in the marine environment. Inf. Syst. Front. 18(4), 765–780 (2016)CrossRefGoogle Scholar
  19. 19.
    van Laere, J., Nilsson, M.: Evaluation of a workshop to capture knowledge from subject matter experts in maritime surveillance. In: Proceedings of FUSION, pp. 171–178 (2009)Google Scholar
  20. 20.
    Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Claramunt, C., Ray, C., Scarlatti, D., Fuchs, G., Andrienko, G.L., Andrienko, N.V., Mock, M., Camossi, E., Jousselme, A., Garcia, J.M.C.: Big data analytics for time critical mobility forecasting: recent progress and research challenges. In: Proceedings of the 21th International Conference on Extending Database Technology, EDBT 2018, Vienna, 26–29 March 2018, pp. 612–623 (2018)Google Scholar
  21. 21.
    Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Fuchs, G., Mock, M., Andrienko, G.L., Andrienko, N.V., Claramunt, C., Ray, C., Camossi, E., Jousselme, A.: Increasing maritime situation awareness via trajectory detection, enrichment and recognition of events. In: Web and Wireless Geographical Information Systems - Proceedings of 16th International Symposium, W2GIS 2018, A Coruña, 21–22 May 2018, pp. 130–140 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manolis Pitsikalis
    • 1
  • Konstantina Bereta
    • 2
  • Marios Vodas
    • 2
  • Dimitris Zissis
    • 3
    • 2
  • Alexander Artikis
    • 4
    • 1
    Email author
  1. 1.Institute of Informatics & TelecommunicationsNCSR DemokritosAthensGreece
  2. 2.MarineTrafficAthensGreece
  3. 3.Department of Product & Systems Design EngineeringUniversity of the AegeanSyrosGreece
  4. 4.Department of Maritime StudiesUniversity of PiraeusPiraeusGreece

Personalised recommendations