The δ Big Data Architecture for Mobility Analytics

  • George A. VourosEmail author
  • Apostolis Glenis
  • Christos Doulkeridis


Motivated by needs in mobility analytics that require joint exploitation of streamed and voluminous archival data from diverse and heterogeneous data sources, this chapter presents the δ architecture: Denoting “difference,” δ emphasizes on the different processing requirements from loosely coupled components, which serve intertwined processing purposes, forming processing pipelines. The δ architecture, being a generic architectural paradigm for realizing big data analytics systems, contributes principles for realizing such systems, focusing on the requirements from the system as whole, as well as from individual components and pipelines. The chapter presents the datAcron integrated system as a specific instantiation of the δ architecture, aiming to satisfy requirements for big data mobility analytics, exploiting real-world mobility data for performing real-time and batch analysis tasks.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by the datAcron project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 687591.


  1. 1.
    Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)CrossRefGoogle Scholar
  2. 2.
    Marz, N.: How to beat the CAP theorem., October 13, 2011. Retrieved 10 May 2018Google Scholar
  3. 3.
    Kreps, J.: Questioning the lambda architecture. O’reilly, July 2, 2014. Retrieved 10 May 2018
  4. 4.
    Vouros, G.A., et al.: Big data analytics for time critical mobility forecasting: recent progress and research challenge. In: 21st International Conference on Extending Database Technology (EDBT/ICDT 2018), ViennaGoogle Scholar
  5. 5.
    Koutroumanis, N., et al.: Integration of mobility data with weather. In: Proceedings of BDMA@EDBT2019, CEUR, vol. 2322 (2019).
  6. 6.
    Andrienko, G., et al.: Visual analytics of mobility and transportation: state of the art and further research directions. IEEE Trans. Intell. Transp. Syst. 18(8), 2232–2249 (2017)CrossRefGoogle Scholar
  7. 7.
    Martinez-Prieto, M.A., et al.: The solid architecture for real-time management of big semantic data. Future Gener. Comput. Syst. 47, 62–79 (2015)CrossRefGoogle Scholar
  8. 8.
    Villari, M., et al.: AllJoyn lambda: an architecture for the management of smart environments in IoT. In: 2014 International Conference on Smart Computing Workshops, Hong Kong, 2014, pp. 9–14.
  9. 9.
    Armbrust, M., et al.: Structured streaming: a declarative API for real-time applications in Apache Spark. In: Proceedings of the 2018 International Conference on Management of Data (SIGMOD ’18), pp. 601–613. ACM, New York (2018).
  10. 10.
    Fernandez, R.C., et al.: Liquid: unifying nearline and offline big data integration. In: 7th Biennial Conference on Innovative Data Systems Research (CIDR’15), Asilomar, 4–7 January 2015Google Scholar
  11. 11.
    Amini, S., Gerostathopoulos, I., Prehofer, C.: Big data analytics architecture for real-time traffic control. In: 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (2017).
  12. 12.
    Fiosina, J., Fiosins, M., Mueller, J.P.: Big data processing and mining for next generation intelligent transportation systems. J. Teknol. 63(3), 23–38 (2013). Google Scholar
  13. 13.
    Kemp, G., et al.: Towards Cloud big data services for intelligent transport systems. In: Concurrent Engineering, Delft, Jul 2015Google Scholar
  14. 14.
    Sastry, V.N., Janakiraman, T.N, Mohideen, S.I.: New algorithms for multi objective shortest path problem. Opsearch 40(4), 278–298 (2003). MathSciNetCrossRefGoogle Scholar
  15. 15.
    Patroumpas, K., et al.: Online event recognition from moving vessel trajectories. Geoinformatica 21(2), 389–427 (2017)CrossRefGoogle Scholar
  16. 16.
    Santipantakis, G.M., et al.: SPARTAN: semantic integration of big spatio-temporal data from streaming and archival sources. Future Comput. Gener. Syst. Available online,
  17. 17.
    Nikitopoulos, P., et al.: Parallel and scalable processing of spatio-temporal RDF queries using Spark. Geoinformatica.
  18. 18.
    Petrou, P., et al.: Online long-term trajectory prediction based on mined route patterns (2019).
  19. 19.
    Georgiou, H.V., et al.: Moving objects analytics: survey on future location & trajectory prediction methods.
  20. 20.
    Georgiou, H.V., et al.: Semantic-aware aircraft trajectory prediction using flight plans. Int. J. Data Sci. Anal. Available online,
  21. 21.
    Alevizos, E., Artikis, A., Paliouras, G.: Wayeb: a tool for complex event forecasting. In: Artificial Intelligence and Reasoning (22nd LPAR), Awassa, 2018Google Scholar
  22. 22.
    Pelekis, N., et al.: In-DBMS sampling-based sub-trajectory clustering. In: Proceedings of EDBT 2017, 21–24 March, pp. 632–643 (2017)Google Scholar
  23. 23.
    Santipantakis, G.M., et al.: RDF-Gen: generating RDF from streaming and archival data. In: WIMS’18, Novi SadGoogle Scholar
  24. 24.
    Vouros, G.A., et al.: The datAcron ontology for the specification of semantic trajectories. J. Data Semant. 8, 235–262 (2019). The datAcron ontology:

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • George A. Vouros
    • 1
    Email author
  • Apostolis Glenis
    • 1
  • Christos Doulkeridis
    • 1
  1. 1.University of PiraeusPiraeusGreece

Personalised recommendations