The Study of Stratification of Multilayer Structures Based on Finite Element Modeling and Neural Network Technologies

  • A. V. CherpakovEmail author
  • P. V. Vasiliev
  • A. N. Soloviev
  • I. A. Parinov
  • B. V. Sobol
Conference paper
Part of the Springer Proceedings in Materials book series (SPM, volume 6)


An approach to solving the problem of identifying the thickness of the layers of a multilayer structure using the combination of the finite element method and artificial neural networks (ANNs) is presented. The simulation of a multilayer structure in the ANSYS finite element software is presented. The construction model consists of 4 layers, each of which has certain properties. The model is an imitation of the soil foundation of the road surface. Simulation in the form of a simplified, plane statement of the problem is considered. The analysis of surface waves, excited during the simulation of impact loading. The wave field of displacements in a given section of the structure is analyzed. Based on a numerical experiment, an approach is constructed to estimate the thickness of one of the layers of the structure. The application of ANN to restore information about the thickness of one of the layers is considered. As a result of the study, a method for identifying the thickness of the layers of a multilayer structure was developed, based on a combination of the finite element method and ANN.



Research was financially supported by Southern Federal University, 2020 grant number VnGr/2020-04-IM (Ministry of Science and Higher Education of the Russian Federation).


  1. 1.
    C.B. Park, R.D. Miller, J. Environ. Eng. Geophys. 13(1) (2008)Google Scholar
  2. 2.
    S. Haykin, Neural Networks—A Comprehensive Foundation (Prentice Hall, 1998), 842 pGoogle Scholar
  3. 3.
    A.A. Krasnoshchekov, B.V. Sobol, A.N. Solov’ev, A.V. Cherpakov, Russian J. Nondestruct. Test. 47(6) (2011)Google Scholar
  4. 4.
    Z. Waszczyszyn, L. Ziemianski, Comput. Struct. 22(79) (2001)Google Scholar
  5. 5.
    A.N. Solov’ev, P.S. Kurbatova, N.I. Saprunov, S.N. Shevcov, in Proceedings of 10-th International Conference “Modern Problems of Continuum Mechanics”, Rostov-on-Don (2006) (in Russian)Google Scholar
  6. 6.
    S.W. Liu, J.H. Huang, J.C. Sung, C.C. Lee, Comput. Methods Appl. Mech. Eng. 191 (2002)Google Scholar
  7. 7.
    V. Khandetsky, I. Antonyuk, NDT&E Int. 7(35) (2002)Google Scholar
  8. 8.
    Y.G. Xu, G.R. Liu, Z.P. Wu, X.M. Huang, Int. J. Solids Struct. 38 (2001)Google Scholar
  9. 9.
    X. Fang, H. Luo, J. Tang, Comput. Struct. 85 (2005)Google Scholar
  10. 10.
    A.N. Solov’ev, B.V. Sobol’, P.V. Vasil’ev, Russian J. Nondestruct. Test. 52(3) (2016)Google Scholar
  11. 11.
    A. Soloviev, B. Sobol, P. Vasiliev, in Advanced Materials—Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2018, ed. by I.A. Parinov, S.-H. Chang, Y.-H. Kim, Springer Proceedings in Physics, vol. 224 (Springer Nature, Cham, Switzerland, 2019), 615–626Google Scholar
  12. 12.
    D.A. Pozharskii, B.V. Sobol, P.V Vasiliev, Mech. Adv. Mater. Struct. (18 May 2018)Google Scholar
  13. 13.
    A.O. Vatul’jan, Inverse Problems in Solid Mechanics (Moscow, Fizmatlit, 2007), 224 p (in Russian)Google Scholar
  14. 14.
    A.V. Cherpakov, A.N. Soloviev, V.V. Gricenko, O.U. Goncharov, Def. Sci. J. 66(1) (2016)Google Scholar
  15. 15.
    V.A. Akopyan, A.N. Solov’ev, A.V. Cherpakov, S.N. Shevtsov, Russian J. Nondestruct. Test. 49(10) (2013)Google Scholar
  16. 16.
    A.V. Cherpakov, O.V. Shilyaeva, M.N. Grigoryan, T.V. Polyakova, IOP Conf. Ser.Mater. Sci. Eng. 698, 066021 (2019)CrossRefGoogle Scholar
  17. 17.
    A.V. Cherpakov, E.A. Shlyakhova, I.O. Egorochkina, Y.A. Kokareva, Mater. Sci. Forum 931 (2018)Google Scholar
  18. 18.
    A.N. Soloviev, I.A. Parinov, A.V. Cherpakov, Y.A. Chaika, E.V. Rozhkov, Mater. Phys. Mech. 37(2) (2018)Google Scholar
  19. 19.
    A. Cherpakov, I. Egorochkina, E. Shlyakhova, A. Kharitonov, A. Zarovny, S. Dobrohodskaya, in MATEC Web of Conferences, vol. 106, 04009. (2017)Google Scholar
  20. 20.
    S.N. Shevtsov, A.N. Soloviev, I.A. Parinov, A.V. Cherpakov, V.A. Chebanenko, Piezoelectric Actuators and Generators for Energy Harvesting—Research and Development (Springer Cham, Switzerland, 2018), 182 pGoogle Scholar
  21. 21.
    A.V. Nasedkin, DrSc Thesis (Phys.-Math. Sciences). Rostov State University, Rostov-on-Don, 271 p. (2001) (in Russian)Google Scholar
  22. 22.
    V.A. Krasil’nikov, V.V. Krylov, Introduction to Physical Acoustics (Moscow, Nauka, 1984), 400 p (in Russian)Google Scholar
  23. 23.
    D. Kingma, J. Ba, in International Conference on Learning Representations. arXiv:1412.6980 (2014)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. V. Cherpakov
    • 1
    • 2
    Email author
  • P. V. Vasiliev
    • 3
  • A. N. Soloviev
    • 1
    • 2
  • I. A. Parinov
    • 2
  • B. V. Sobol
    • 3
  1. 1.Department of Theoretical and Applied MechanicsDon State Technical UniversityRostov-on-DonRussia
  2. 2.Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal UniversityRostov-on-DonRussia
  3. 3.Department of Information TechnologiesDon State Technical UniversityRostov-on-DonRussia

Personalised recommendations