Advertisement

Fabrication and Investigation of InSb Thin Films for IR SAW Photodetectors

  • M. E. Kutepov
  • T. A. Minasyan
  • D. A. Zhilin
  • V. E. Kaydashev
  • G. Y. Karapetyan
  • K. G. Abdulvakhidov
  • S. I. Shevtsova
  • E. M. KaidashevEmail author
Conference paper
  • 36 Downloads
Part of the Springer Proceedings in Materials book series (SPM, volume 6)

Abstract

The two-stage pulsed laser deposition growth of thin InSb films on (111) Si and on LiNbO3 YX-128° substrates was studied using a thin InSb buffer layer deposited at a low temperature. This approach improves carrier mobility in InSb base layer, which largely determines the sensitivity of IR photodetectors at room temperature. The response speed in the near-IR range at λ = 985 nm was 1.92 ms, and the decay time was 1.67 ms, under xenon lamp radiation with mechanical modulation. The photosensitivity of the InSb/(111) Si film was about 1 A/W at 293 K. The response time of the sample was~6.8 μs, the time of complete recovery was ~34.5 μs, under laser diode radiation with a wavelength of 840 nm, power 1 mW.

Notes

Acknowledgements

This research work is supported by Russian Education and Science Ministry, the project No. 16.5405.2017/8.9.

References

  1. 1.
    S. Khamseh, Y. Yasui, K. Nakayama, K. Nakatani, M. Mori, K. Maezawa, Jpn. J. Appl. Phys. 50, 04DH13 (2011)Google Scholar
  2. 2.
    X. Zhu, W. Sun, X. Cao, X. Zhang, L. Zhang, F. Tao, Proc. SPIE 8419, 841915 (2013)CrossRefGoogle Scholar
  3. 3.
    T. Zhang, S.K. Clowers, M. Debnath, A. Bennett, C. Roberts, J.J. Haris, R.A. Stradling, L.F. Cohen. Appl. Phys. Lett. 84, 4463 (2004)Google Scholar
  4. 4.
    J.I. Chyi, D. Biswas, S.V. Lyer, N.S. Kumar, H. Morkoc, R. Bean, K. Zanio, H.Y. Lee, H. Chen, Appl. Phys. Lett. 54, 1016 (1989)CrossRefGoogle Scholar
  5. 5.
    M. Mori, D.M. Li, M. Yamazaki, T. Tambo, H. Ueba, Appl. Surf. Sci. 104–105, 563 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Mori, Y. Tsubosaki, T. Tambo, H. Ueba, C. Tatsuyama, Appl. Surf. Sci. 117–118, 512 (1997)CrossRefGoogle Scholar
  7. 7.
    D.M. Li, M. Atoji, T. Okamoto, T. Tambo, C. Tatsuyama, Surf. Sci. 417, 210 (1998)CrossRefGoogle Scholar
  8. 8.
    D.V. Gruznev, B.V. Rao, T. Tambo, C. Tatsuyama, Appl. Surf. Sci. 190, 134 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Kanisawa, H. Yamaguchi, Y. Huirayama, Appl. Phys. Lett. 76, 589 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Mori, M. Saito, Y. Yamashita, K. Nagashima, M. Hashimoto, C. Tatsuyama, T. Tambo, J. Cryst. Growth 301–302, 207 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Mori, M. Saito, K. Nagashima, K. Ueda, Y. Yamashita, C. Tatsuyama, T. Tambo, K. Maezawa, Phys. Status Solidi C 5, 2772 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Mori, M. Saito, K. Nagashima, K. Ueda, T. Yoshida, K. Maezawa, J. Cryst. Growth 311, 1692 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. E. Kutepov
    • 1
  • T. A. Minasyan
    • 1
  • D. A. Zhilin
    • 1
  • V. E. Kaydashev
    • 1
    • 2
  • G. Y. Karapetyan
    • 1
  • K. G. Abdulvakhidov
    • 1
  • S. I. Shevtsova
    • 1
  • E. M. Kaidashev
    • 1
    Email author
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations