Advertisement

Crystal Structure and Dielectric Properties of Layered Perovskite-Like Solid Solutions Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) with High Curie Temperature

  • S. V. ZubkovEmail author
  • S. I. Shevtsova
Conference paper
  • 32 Downloads
Part of the Springer Proceedings in Materials book series (SPM, volume 6)

Abstract

The structural and electrophysical characteristics of a number of solid solutions of layered perovskite-like oxides Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) have been studied. According to the data of powder X-ray diffraction, all the compounds are single-phase with the structures of two-layer Aurivillius phases) (m = 2) with the orthorhombic crystal lattice (space group A21am). The temperature dependence of the relative permittivity ε/ε0(T) compounds have been measured and showed that the Curie temperature of the perovskite-like oxides Bi3−xLuxTiNbO9 increases with the doping parameter x up to TC = 964 °C.

Notes

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, 2020).

References

  1. 1.
    B. Aurivillius, Arkiv. Kemi. 1, 463 (1949)Google Scholar
  2. 2.
    B. Aurivillius, Arkiv. Kemi. 1, 499 (1949)Google Scholar
  3. 3.
    B. Aurivillius, Arkiv. Kemi. 2, 512 (1950)Google Scholar
  4. 4.
    V.A. Isupov, J. Inorg. Chem. 39, 731 (1994)Google Scholar
  5. 5.
    S.V. Zubkov, V.G. Vlasenko, J. Phys. Solid State 59(12), 2325 (2017)CrossRefGoogle Scholar
  6. 6.
    S.V. Zubkov, V.G. Vlasenko, V.A. Shuvaeva, S.I. Shevtsova, J. Phys. Solid State 58(1), 42 (2016)CrossRefGoogle Scholar
  7. 7.
    I.A. Zarubin, V.G. Vlasenko, A.T. Shuvaev, Inorg. Mater. 45, 555 (2009)CrossRefGoogle Scholar
  8. 8.
    V.G. Vlasenko, A.T. Shuvaev, I.A. Zarubin, V.V. Vlasenko, Phys. Solid State 52, 744 (2010)CrossRefGoogle Scholar
  9. 9.
    Z.G. Gai, M.L. Zhao, W.B. Su, C.L. Wang, J. Liu, J.L. Zhang, J. Electroceram 31, 143 (2013)CrossRefGoogle Scholar
  10. 10.
    M.A. Bekhtin, A.A. Bush, K.E. Kamentsev, A.G. Segalla, Inorg. Mater. 52, 557 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, H. Yan, X. Dong, Y. Wang, Mater. Res. Bull. 38, 241 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Ando, M. Kimura, Y. Sakabe, Jpn. J. Appl. Phys. 42, 520 (2003)CrossRefGoogle Scholar
  13. 13.
    R.Z. Hou, X.M. Chen, J. Mater. Res. 20, 2354 (2005)CrossRefGoogle Scholar
  14. 14.
    R.Z. Hou, X.M. Chen, Solid State Commun. 130, 469 (2004)CrossRefGoogle Scholar
  15. 15.
    Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Jpn. J. Appl. Phys. 39, 1259 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Yao, C. Song, P. Bao, D. Su, D.X. Lu, J. Appl. Phys. 95, 3126 (2004)CrossRefGoogle Scholar
  17. 17.
    R.W. Wolfe, R.E. Newnham, D.K. Smith, Ferroelectrics 3, 11971 (2004)Google Scholar
  18. 18.
    A. Moure, L. Pardo, C. Alemany, J. Eur. Ceram. 21, 1399 (2001)CrossRefGoogle Scholar
  19. 19.
    V.G. Vlasenko, S.V. Zubkov, V.A. Shuvaeva, Phys. Solid State 57, 900 (2015)CrossRefGoogle Scholar
  20. 20.
    Z.Y. Zhou, X.L. Dong, H. Chen, H.X. Yan, J. Am. Ceram. Soc. 89, 1756 (2006)CrossRefGoogle Scholar
  21. 21.
    S.V. Zubkov, V.G. Vlasenko, V.A. Shuvaeva, S.I. Shevtsova, Phys. Solid State 58, 42 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.X. Cheng, X.L. Wang, Appl. Phys. Lett. 90, 222902 (2007)CrossRefGoogle Scholar
  23. 23.
    R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Mater. Res. Bull. 38, 25 (2003)CrossRefGoogle Scholar
  24. 24.
    H.X. Yan, C.G. Li, J.G. Zhou, Jpn. J. Appl. Phys. 40, 6501 (2001)CrossRefGoogle Scholar
  25. 25.
    Z.X. Cheng, X.L. Wang, Appl. Phys. Lett. 89, 032901 (2006)CrossRefGoogle Scholar
  26. 26.
    Z.G. Gai, J.F. Wang, Appl. Phys. Lett. 90, 052911 (2007)CrossRefGoogle Scholar
  27. 27.
    S.J. Zhang, Solid State Commun. 140, 154 (2006)CrossRefGoogle Scholar
  28. 28.
    Z.X. Cheng, X.L. Wang, J. Phys. D 43, 242001 (2010)CrossRefGoogle Scholar
  29. 29.
    M. Matsushita, R. Aoyagi, H. Takeda, Jpn. J. Appl. Phys. 43, 7164 (2004)CrossRefGoogle Scholar
  30. 30.
    R. Aoyagi, S. Inai, Y. Hiruma, T. Takenaka, Jpn. J. Appl. Phys. 44, 7055 (2005)CrossRefGoogle Scholar
  31. 31.
    Z.X. Cheng, X.L. Wang, J. Appl. Phys. 107, 084105 (2010)CrossRefGoogle Scholar
  32. 32.
    W. Kraus, G. Nolze, Powder Cell for Windows, Version2.3 (Federal Institute for Materials Research and Testing, Berlin (1999)Google Scholar
  33. 33.
    R.D. Shannon, Acta crystallographica Section A. crystal physics. Diffr. Theor. Gen. Crystallogr. 32, 75 (1976)Google Scholar
  34. 34.
    V.M. Goldschmidt, Geochemisca Veterlun (NorskeVidenkap, Oslo, 1927)Google Scholar
  35. 35.
    A. Moure, L. Pardo, J. Appl. Phys. 97, 084103 (2005)CrossRefGoogle Scholar
  36. 36.
    H. Zhang, H. Yan, M.J. Reece, J. Appl. Phys. 108, 014109 (2010)CrossRefGoogle Scholar
  37. 37.
    V.G. Vlasenko, S.V. Zubkov, V.A. Shuvaeva, K.G. Abdulvakhidov, S.I. Shevtsova, Phys. Solid State 56(8), 1554 (2014)CrossRefGoogle Scholar
  38. 38.
    B. Jiménez, L. Pardo, A. Castro, P. Millán, R. Jiménez, M. Elaatmani, M. Oualla, Ferroelectrics 241, 279 (2000)CrossRefGoogle Scholar
  39. 39.
    D. Kajewski, Z. Ujma, K. Szot, M. Paweczyk, Ceram. Int. 35, 2351 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Institute of Earth ScienceSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations