Advertisement

Buckling Analysis of Folded Composite Plate Subjected to In-Plane Loading Condition

  • Bui Van BinhEmail author
  • Le Thuong Hien
Conference paper
  • 38 Downloads
Part of the Springer Proceedings in Materials book series (SPM, volume 6)

Abstract

This paper presents some numerical results of buckling analysis of a folded laminate composite plate using finite element method. The effects of fiber orientations, folding angle on buckling loads, and the corresponding mode shapes under in-plane loading condition were considered. Matlab programming using nine nodded rectangular isoparametric plate element with five degree of freedom per node based on Mindlin plate theory was built to solve the problems. A good agreement is found between the results of this technique and other published results available in the literature.

References

  1. 1.
    J.E. Goldberg, H.L. Leve, Int. Assoc. Bridg. Struct. Eng. 17, 58–86 (1957)Google Scholar
  2. 2.
    D. Yitzhaki, M. Reiss, J. Struct. Div. ASCE 88, 107–142 (1962)Google Scholar
  3. 3.
    Y.K. Cheung, Proc. ASCE 94, 1365–1378 (1968)Google Scholar
  4. 4.
    Y.K. Cheung, J. Struct. Div. ASCE 12, 2963–2979 (1969)Google Scholar
  5. 5.
    S. Maleki, Comput. Struct. 40, 527–538 (1991)CrossRefGoogle Scholar
  6. 6.
    Y. Lavy, P. Bar-Yoseph, G. Rosenhouse, Comput. Struct. 42, 433–446 (1992)CrossRefGoogle Scholar
  7. 7.
    T. Irie, G. Yamada, Y. Kobayashi, J. Acoust. Soc. Am. 76(6), 1743–1748 (1984)CrossRefGoogle Scholar
  8. 8.
    B. Perry, P. Bar-Yoseph, G. Rosenhouse, Comput. Struct. 44, 177–183 (1992)CrossRefGoogle Scholar
  9. 9.
    S. Pal, A. Guha Niyogi, J. Reinf. Plast. Compos. 27, 692–710 (2008)Google Scholar
  10. 10.
    S. Haldar, A.H. Sheikh, Finite Elem. Anal. Des. 42, 208–226 (2005)CrossRefGoogle Scholar
  11. 11.
    T.I. Thinh, B. Van Binh, T.M. Tu, Vietnam. J. Mech., VAST 34(3) (2012)Google Scholar
  12. 12.
    D.B. Singh, B.N. Singh, Compos. Struct. 157, 360–365 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Liang, Q. Sun, Y. Zhang, Compos. Struct. 206, 681–692 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Ahmadi, H.A. Rasheed, Compos. Struct. 185, 348–361 (2018)CrossRefGoogle Scholar
  15. 15.
    E.J. Barbero, A. Madeo, G. Zagari, R. Zinno, G. Zucco, Compos. Struct. 116, 223–234 (2014)CrossRefGoogle Scholar
  16. 16.
    H.R. Ovesy, J. Fazilati, Compos. Struct. 94, 1250–1258 (2012)CrossRefGoogle Scholar
  17. 17.
    K.-J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, NJ 1996)Google Scholar
  18. 18.
    T.I. Thinh, Composite materials (Viet Nam Education Publishing House, Hanoi 1994) (in Vietnamese)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Power ElectricHanoiViet Nam

Personalised recommendations