Urban Land Use Classification Using Street View Images Based on Deep Transfer Network

  • Yafang Yu
  • Fang FangEmail author
  • Yuanyuan Liu
  • Shengwen Li
  • Zhongwen Luo
Conference paper
Part of the Studies in Distributed Intelligence book series (SDI)


Urban land use maps are significant references for urban planning and environmental research. Contrary to land cover mapping, it is generally impossible using overhead imagery since it requires close-up views. Street view images capture the surrounding scenes along streets and represent urban land information objectively. In this work, we proposed an automatic classification model using street view images for urban land use classification. We utilize high-level semantic image features extracted adopting a deep transfer network, which includes three fully-connected layers. Geographic information was applied to mask out land use parcel and to associate the corresponding street view images. The approach allows us to achieve 61.8% accuracy on a challenging six class land use mapping problem. The assessment results show that the proposed approach has potential on land use classification. Since the street view images are publicly accessible and supply a variety of APIs for downloading, the presented approach would provide an effective way for urban-related research in future.


Land use Transfer learning Street view images Classification 


  1. 1.
    C. Liu, B.H. Henderson, D. Wang, et al., A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 565, 607–615 (2016)CrossRefGoogle Scholar
  2. 2.
    G.L. Feyisa, H. Meilby, G.D. Jenerette, et al., Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sens. Environ. 175, 14–31 (2016)CrossRefGoogle Scholar
  3. 3.
    D.F. Hong, N. Yokoya, N. Ge, et al., Learnable manifold alignment (LeMA): a semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J. Photogramm. Remote Sens. 147, 193–205 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Abdikan, F.B. Sanli, M. Ustuner, et al., Land cover mapping using SENTINEL-1 SAR data. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 7, 757–761 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Suresh, R. Gehrke, T. Wiatr, et al., Synthetic aperture radar (SAR) based classifiers for land applications in Germany. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 1187–1193 (2016)CrossRefGoogle Scholar
  6. 6.
    J.F. Mas, R. González, Change detection and land use/land cover database updating using image segmentation. in GIS Analysis and Visual Interpretation. ISPRS Geospatial Week, 28 Sep–03 Oct, La Grande Motte, France, 2015Google Scholar
  7. 7.
    M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva, Land use classification in remote sensing images by convolutional neural networks. arXiv preprint arXiv:1508. 00092, 2015Google Scholar
  8. 8.
    B. Zhao, B. Huang, Y. Zhong, Transfer learning with fully pretrained deep convolution networks for land-use classification. IEEE Geosci. Remote Sens. Lett. 14(9), 1436–1440 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Jiang, A. Alves, F. Rodrigues, et al., Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 53, 36–46 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Paldino, I. Bojic, S. Sobolevsky, et al., Urban magnetism through the lens of geo-tagged photography. EPJ Data Sci. 4(1), 5 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Deng, S. Newsam, Quantitative comparison of open-source data for fine-grain mapping of land use. in ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2017Google Scholar
  12. 12.
    L. Wang, F. Fang, X. Yuan, et al., Urban function zoning using geotagged photos and openstreetmap. Geosci. Remote Sens. Symp. 2017, 815–818 (2017)Google Scholar
  13. 13.
    L. Cheng, S.S. Chu, W.W. Zong, et al., Use of tencent street view imagery for visual perception of streets. ISPRS Int. J. Geo-Inf. 6(9), 265 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Kang, M. Körner, Y. Wang, H. Taubenböck, X.X. Zhu, Building instance classification using street view images, ISPRS J Photogramm. Remote Sens. 145(Part A), 44–59 (2018)Google Scholar
  15. 15.
    I. Seiferling, N. Naik, C. Ratti, et al., Green streets − quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 165, 93–101 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Liu, E.A. Silva, C. Wu, et al., A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 65, 113–125 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Li, C. Zhang, W. Li, Building block level urban land-use information retrieval based on Google Street View images. Gisci. Remote Sens. 2017, 1–17 (2017)Google Scholar
  18. 18.
    S. Branson, J.D. Wegner, D. Hall, et al., From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 135, 13–30 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Karayev, M. Trentacoste, H. Han, et al., Recognizing image style. arXiv preprint arXiv:1311. 3715, 2013Google Scholar
  20. 20.
    C. Szegedy, S. Ioffe, V. Vanhoucke, et al., Inception-v4, inception-ResNet and the impact of residual connections on learning. Comput. Vision Pattern Recogn. 2016Google Scholar
  21. 21.
    O. Russakovsky, J. Deng, H. Su, et al., ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 3 (2014)MathSciNetGoogle Scholar
  22. 22.
    H. Rao, X. Shi, A. K. Rodrigue, J. Feng, Y. Xia, M. Elhoseny, X. Yuan, L. Gu, Feature selection based on artificial bee colony and gradient boosting decision tree Appl. Soft Comput. 2018.
  23. 23.
    M. Elhoseny, K. Shankar, J. Uthayakumar, Intelligent diagnostic prediction and classification system for chronic kidney disease. Nat. Sci. Rep. 2019.
  24. 24.
    N. Krishnaraj, M. Elhoseny, M. Thenmozhi, Mahmoud M. Selim, K. Shankar, Deep learning model for real-time image compression in Internet of Underwater Things (IoUT). J. Real-Time Image Process. 2019.
  25. 25.
    X. Yuan, V. Sarma, Automatic urban water-body detection and segmentation from sparse ALSM data via spatially constrained model-driven clustering. IEEE Geosci. Remote Sens. Lett. 8(1), 73–77 (2010)CrossRefGoogle Scholar
  26. 26.
    B.S. Murugan, M. Elhoseny, K. Shankar, J. Uthayakumar, Region-based scalable smart system for anomaly detection in pedestrian walkways. Comput. Electr. Eng. 75, 146–160 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yafang Yu
    • 1
  • Fang Fang
    • 1
    Email author
  • Yuanyuan Liu
    • 1
  • Shengwen Li
    • 1
  • Zhongwen Luo
    • 1
  1. 1.College of Information EngineeringChina University of GeosciencesWuhanChina

Personalised recommendations