Advertisement

Eigenvalue Problems of Ordinary Differential Equations

  • György SzeidlEmail author
  • László Péter Kiss
Chapter
  • 30 Downloads
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)

Abstract

Eigenvalue problem of ordinary differential equations is considered. We present the definition of the Green functions and reduce some eigenvalue problems to homogeneous Fredholm integral equation with the Green function as kernel. A solution algorithm is suggested by the use of which numerical solutions are given for some vibration problems of circular plates subjected to constant radial in plane load and for the vibratory behavior of beams loaded by an axially force.

References

  1. 1.
    L. Collatz, Eigenwertaufgaben mit Technischen Anwendungen. Russian edn. in 1968 (Akademische Verlagsgesellschaft Geest & Portig K.G., Leipzig, 1963)Google Scholar
  2. 2.
    E. Kamke, Über die Definiten Selbstadjungierten Eigenwertaufgaben bei gewöhnlichen Differentialgleichungen IV. Math. Z. 48, 67–100 (1942)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Collatz, The Numerical Treatment of Differential Equations, 3rd edn. (Springer, Berlin, 1966)Google Scholar
  4. 4.
    N.M. Matveev, Analytic Theory of Differential Equations [in Russian] (Leningrad Pedagogic University, St. Petersburg, 1989)Google Scholar
  5. 5.
    M. Bocher, Some theorems concerning linear differential equations of the second order. Bull. Am. Math. Soc. 6(7), 279–280 (1901)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Bocher, Boundary problems and Green’s functions for linear differential and difference equations. Ann. Math. 13.1/4, 71–88 (1911–1912)Google Scholar
  7. 7.
    E.L. Ince, Ordinary Differential Equations. (a) (Longmans, Green and Co., London, 1926), pp. 256–258Google Scholar
  8. 8.
    J.M. Höené-Wronski, Réfutation de la Théorie des Fonctions Analytiques de Lagrange (Blankenstein, Paris, 1812)Google Scholar
  9. 9.
    N. Szűcs, Vibrations of circular plates subjected to an in-plane load. GÉP LVIII.5-6 (2007 (in Hungarian)), pp. 41–47Google Scholar
  10. 10.
    N. Szűcs, G. Szeidl, Vibration of circular plates subjected to constant radial load in their plane. J. Comput. Appl. Mech. 12(1), 57–76 (2017).  https://doi.org/10.32973/jcam.2017.004
  11. 11.
    I. Kozák, Strength of Materials V. - Thin Walled Structures and the Theory of Plates and Shells (in Hungarian). Tankönyvkiadó (Publisher of Textbooks) (Budapest, Hungary, 1967), pp. 287–291Google Scholar
  12. 12.
    G.B. Arken, H.J. Weber, Mathematical Methods for Physicists, 7th edn. (Elsevier/Academic, Amsterdam, 2005)Google Scholar
  13. 13.
    E.I. Fredholm, On a new method for solving the Dirichlet problem. Sur une nouvelle méthode pour la résolution du probléme de Dirichlet. Stockh. Öfv. 57, 39–46 (1900)Google Scholar
  14. 14.
    E.I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903).  https://doi.org/10.1007/bf02421317
  15. 15.
    W.V. Lovitt, Linear Integral Equations (McGraw-Hill, New York, 1924)Google Scholar
  16. 16.
    J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. A 209, 441–458 (1909).  https://doi.org/10.1098/rsta.1909.0016
  17. 17.
    R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 1 (Interscience Publishers, New York, 1953), pp. 148–150Google Scholar
  18. 18.
    C.T.H. Baker, in The Numerical Treatment of Integral Equations - Monographs on Numerical Analysis, ed. by L. Fox, J. Walsh (Clarendon Press, Oxford, 1977)Google Scholar
  19. 19.
    C.A. Brebbia, I. Dominguez, Boundary Elements, an Introductory Course, 2nd edn. (1992)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Applied MechanicsUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations