Advertisement

Eigenvalue Problems Described by Degenerated Systems of Ordinary Differential Equations

  • György SzeidlEmail author
  • László Péter Kiss
Chapter
  • 26 Downloads
Part of the Foundations of Engineering Mechanics book series (FOUNDATIONS)

Abstract

Vibration problems of curved beams with a centerline of constant radius are governed by degenerated differential equation systems. Here we provide a definition for the Green function matrices concerning the degenerated differential equation systems. These matrices are determined for pinned-pinned, fixed-fixed and pinned-fixed heterogeneous curved beams. By utilizing the Green function matrices the eigenvalue problems that describe the vibratory behavior of these beams are reduced to Fredholm integral equation systems. Numerical solutions are also presented in graphical format.

References

  1. 1.
    J.P. Den Hartog, Mechanical Vibrations. Civil, Mechanical and Other Engineering Series, 1st edn.: 1934 (Dover Publications, Mineola, 1985)Google Scholar
  2. 2.
    J.P. Den Hartog, Vibration of frames of electrical machines. J. Appl. Mech. 50, 1–6 (1828)Google Scholar
  3. 3.
    E. Volterra, J.D. Morrel, On the fundamental frequencies of curved beams. Bull. Polytech. Inst. Jassy 7(11), 1–2 (1961)Google Scholar
  4. 4.
    K. Federhofer, Dynamik des Bogenträgers und Kreisringes [Dynamics of Arches and Circular Rings] (Springer, Wien, 1950)CrossRefGoogle Scholar
  5. 5.
    M.S. Qatu, A.A. Elsharkawy, Vibration of laminated composite arches with deep curvature and arbitrary boundaries. Comput. Struct. 47(2), 305–311 (1993).  https://doi.org/10.1016/0045-7949(93)90381-M
  6. 6.
    K. Kang, C.W. Bert, A.G. Striz, Vibration analysis of shear deformable circular arches by the differential quadrature method. J. Sound Vib. 181(2), 353–360 (1995).  https://doi.org/10.1006/jsvi.1995.0258
  7. 7.
    E. Tüfekçi, A. Arpaci, Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia affects. J. Sound Vib. 209(5), 845–856 (1997).  https://doi.org/10.1006/jsvi.1997.1290CrossRefGoogle Scholar
  8. 8.
    A. Krishnan, Y.J. Suresh, A simple cubic linear element for static and free vibration analyses of curved beams. Comput. Struct. 68(5), 473–489 (1998).  https://doi.org/10.1016/S0045-7949(98)00091-1CrossRefzbMATHGoogle Scholar
  9. 9.
    I. Ecsedi, K. Dluhi, A linear model for the static and dynamic analysis of non-homogeneous curved beams. Appl. Math. Model. 29(12), 1211–1231 (2006).  https://doi.org/10.1016/j.apm.2005.03.006CrossRefzbMATHGoogle Scholar
  10. 10.
    F.F. Çalim, Forced vibration of curved beams on two-parameter elastic foundation. Appl. Math. Model. 36(3), 964–973 (2012).  https://doi.org/10.1016/j.apm.2011.07.066MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Hajianmaleki, M.S. Qatu, Vibrations of straight and curved composite beams: a review. Compos. Struct. 100, 218–232 (2013).  https://doi.org/10.1016/j.compstruct.2013.01.001.340
  12. 12.
    B. Kovács, Vibration analysis of layered curved arch. J. Sound Vib. 332(18), 4223–4240 (2013).  https://doi.org/10.1016/j.jsv.2013.03.011
  13. 13.
    L.P. Kiss, Vibrations and stability of heterogeneous curved beams. Ph.D. thesis. Institute of Applied Mechanics, University of Miskolc, Hungary (2015), 142 ppGoogle Scholar
  14. 14.
    L.P. Kiss, Green’s functions for nonhomogeneous curved beams with applications to vibration problems. J. Comput. Appl. Mech. 12(1), 19–41 (2017).  https://doi.org/10.32973/jcam.2017.002
  15. 15.
    G. Szeidl, Effect of change in length on the natural frequencies and stability of circular beams in Hungarian. Ph.D. thesis. Department of Mechanics, University of Miskolc, Hungary (1975), 158 ppGoogle Scholar
  16. 16.
    J.G. Obádovics, On the boundary and initial value problems of differential equation systems. Ph.D. thesis. Hungarian Academy of Sciences (1967) (in Hungarian)Google Scholar
  17. 17.
    L. Kiss et al., Vibrations of fixed-fixed heterogeneous curved beams loaded by a central force at the crown point. Int. J. Eng. Model. 27(3–4), 85–100 (2014)Google Scholar
  18. 18.
    L. Kiss, G. Szeidl, Vibrations of pinned-pinned heterogeneous circular beams subjected to a radial force at the crown point. Mech. Based Des. Struct. Mach.: Int. J. 43(4), 424–449 (2015).  https://doi.org/10.1080/15397734.2015.1022659
  19. 19.
    L.P. Kiss, G. Szeidl, Vibrations of pinned-fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point. J. Sound Vib. 393, 92–113 (2017).  https://doi.org/10.1016/j.jsv.2016.12.032

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Applied MechanicsUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations