Antiarrhythmic Medications

  • J. Anthony GomesEmail author


Until the advent of ablative therapy and the implantable defibrillator, antiarrhythmic drugs (AADs) were the mainstay in the short- and long-term management of cardiac arrhythmias. In this chapter, the author provides a historical overview of AADs, their classification according to the Singh–Vaughan Williams, and the more recent Sicilian Gambit Classification, the debacle of the CAST study, and details the pharmacotherapy of different classes of AADs and outlines general principles in the use of AADs.


Singh–Vaughan Williams  Sicilian Gambit  Antiarrhythmic  Pro-arrhythmic  Torsade de pointes  Na+ channel  IKr channel 


  1. 1.
    Estrada JC, Darbar D. Clinical use of and future perspectives on antiarrhythmic drugs. Eur J Clin Pharmacol. 2008;64(12):1139–46.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Echt DS, Lierson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the cardiac arrhythmia suppression trial. N Engl J Med. 1991;324(12):781–8.PubMedGoogle Scholar
  3. 3.
    Krishnan SC, Antzelevitch C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation. 1993;87:562–72.PubMedGoogle Scholar
  4. 4.
    Coromilas J, Saltman AE, Waldecker B, Dillon SM, Wit AL. Electrophysiological effects of flecainide on anisotropic conduction and reentry in infarcted canine hearts. Circulation. 1995;91:2245–63.PubMedGoogle Scholar
  5. 5.
    Antzelevitch C, Brugada P, Brugada J, Brugada R. Brugada syndrome: from cell to bedside. Curr Probl Cardiol. 2005;30:9–54.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Katritsis D, Camm AJ. New class III antiarrhythmic drugs. Eur Heart J. 1993;14(Suppl H):93–9.PubMedGoogle Scholar
  7. 7.
    Vaughan WE. Classification of antiarrhythmic drugs. In: Sandoe E, Flensted-Jensen E, Olsen K, editors. Symposium on cardiac arrhythmias. Elsinore: Astra; 1970. 826pp.Google Scholar
  8. 8.
    Vaughan Williams EM. Classification of antidysrhythmic drugs. Pharmacol Ther B. 1975;1:115–38.PubMedGoogle Scholar
  9. 9.
    Vaughan Williams EM. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984;24:129–47.PubMedGoogle Scholar
  10. 10.
    The Sicilian gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Task Force of the Working Group on Arrhythmias of the European Society of Cardiolog. Circulation. 1881;84:1831–51.Google Scholar
  11. 11.
    Sheets MF, Fozzard HA, Lipkind GM, et al. Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med. 2010;20:16–21.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Levy S, Azoulay S. Stories about the origin of quinquina and quinidine. J Cardiovasc Electrophysiol. 1994;5:635–6.PubMedGoogle Scholar
  13. 13.
    Liideritz B. Historical development of antiarrhythmic drug therapy. In: Liideritz B, editor. History of dissorders of cardiac rhythm. 3rd ed. New York: Wiley, Blackwell; 2002. p. 87–114.Google Scholar
  14. 14.
    Bellet P, Delaware P, Delourme-Houde J, et al. In: Houde A, editor. Perennite des Alcaloides. Paris: Pariente Louis Pub; 1985.Google Scholar
  15. 15.
    Sydenham T. Method for curing the fevers. Probably Oxford. London; 1666. Google Scholar
  16. 16.
    de Blegny N. La decouverte de l’admirable remede anglais pour la guerison des fievers. Paris; 1680.Google Scholar
  17. 17.
    Wenckebach K: quoted by RuMiere R: Historic de la m^decine. Masson, Paris; 1981.Google Scholar
  18. 18.
    de Boer S, Holikamp HH. The effects of medicines on auricular fibrillation. 1. Experimental researches on the influence of hydroquinone, hydroquinidine. quinine, and hydroquinidine—free quinidine on auricular fibrillation of cats. Proc Acad Sci Amsterdam. 39:266–7I.Google Scholar
  19. 19.
    Van Dongen K, Sanches JR. The action of some quinidine-derivatives on fibrillation of the heart. Arch Intern Pharmacodyn Ther. 1937;55:52–60.Google Scholar
  20. 20.
    Olshansky B, Martins J, Hunt S. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;358:169–76.Google Scholar
  21. 21.
    January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the America College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64:e1–e76.PubMedGoogle Scholar
  22. 22.
    Belhassen B, Glick A, Viskin S. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation. 2004;110:1731–7.PubMedGoogle Scholar
  23. 23.
    Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10:1932–63.PubMedGoogle Scholar
  24. 24.
    Mautz FR. Reduction of cardiac irritability by the epicardial and systematic administration of drugs as a protection in cardiac surgery. J Thor Surg. 1936;5:612–28.Google Scholar
  25. 25.
    Mark LC, Kayden HJ, Steele JM, et al. The physiological disposition and cardiac effects of Procainamide. J Pharmacol Exp Ther. 1951;102:5–15.PubMedGoogle Scholar
  26. 26.
    Moe GK, Abildskov JA. Antiarrhythmic drugs. In: Goodman LS, Gilman A, editors. Goodman and Gillman’s the pharmacological basis of therapeutics. 3rd ed. New York: Macmillan; 1966. p. 699–715.Google Scholar
  27. 27.
    Waxman HL, Buxton AE, Sadowski LM, Josephson ME. The response to procainamide during electrophysiological study for sustained ventricular tachyarrhythmias predicts the response to other medications. Circulation. 1983;67:30–7.PubMedGoogle Scholar
  28. 28.
    Olshansky B, Martins J, Hunt S. N-Acetyl Procainamide causing Torsades de Pointes. Am J Cardiol. 1982;50:1439–41.PubMedGoogle Scholar
  29. 29.
    Katz MJ, Mayer CE, El-Etr A, Sloodi SJ. Clinical evaluation of a new antiarrhythmic agent, SC-7031. Curr Ther Res Clin Exp. 1963;5:343–50.PubMedGoogle Scholar
  30. 30.
    Sherrid MV, Barac I, McKenna WJ, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45:1251–8.PubMedGoogle Scholar
  31. 31.
    Bentley R, Trimen H. Medicinal plants 4. London: Churchill; 1880. p. 293.Google Scholar
  32. 32.
    Moe GK, Abildskov JA, Wieldling S. Antiarrhythmic drugs. In: Goodman LS, Gilman A, editors. Xylocaine. The pharmacological basis of its clinical use. New York, Macmillan. 2nd ed; 1964.Google Scholar
  33. 33.
    Lofgren N. Studies on local Anesthetic. Xylocaine, a new synthetic drug. Stockholm: Haeggstroms; 1948.Google Scholar
  34. 34.
    Chew CYU, Colett J, Singh BN. Mexiletine: a review of its pharmacological properties and therapeutic efficacy in arrhythmias. Drugs. 1979;17:161–81.PubMedGoogle Scholar
  35. 35.
    Danilo P. Tocainide. Am Heart J. 1970;97:259–62.Google Scholar
  36. 36.
    Goodman LS, Gillman A. Goodman and Gillman’s the pharmacological basis of therapeutics. 3rd ed. New York: Macmillan; 1966. p. 699–715.Google Scholar
  37. 37.
    Bigger JT Jr, Hoffman BF. Antiarrhythmic drugs. In: Goodman LS, Gilman A, Rall TW, Nies AS, Taylor P, editors. Goodman and Gillman’s the pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press; 1991. p. 840–73.Google Scholar
  38. 38.
    Hudak JM, Banitt EH, Schmid JR. Discovery and development of Flecainide. Am J Cardiol. 1984;53:17B–20B.PubMedGoogle Scholar
  39. 39.
    Anderson JL, Stewart JR, Perry BA, et al. Oral Flecainide acetate for the treatment of ventricular arrhythmias. N Engl J Med. 1981;305:473–7.PubMedGoogle Scholar
  40. 40.
    Duff JH, Roden DM, Maffucci RJ, et al. Suppression of resistant ventricular arrhythmias by twice daily dosing of flecainide. Am J Cardiol. 1981;48:1133–40.PubMedGoogle Scholar
  41. 41.
    Hodges M, Haughland JM, Granrud GJ, et al. Suppression of ventricular ectopic depolarizations by flecainide acetate, a new antiarrhythmic agent. Circulation. 1982;65:879–85.PubMedGoogle Scholar
  42. 42.
    Zeiler RH, Gough WB, Sung R, El-Sherif N. Electrophysiologic effects of propafenone on canine ischemic cardiac cells. Am J Cardiol. 1981;47:483 (Abstract).Google Scholar
  43. 43.
    Stoschitzky K, Klein W, Stark G, et al. Different stereoselective effects of (R)-and (S)-propafenone: clinical pharmacologic, electrophysiologic, and radioligand binding studies. Clin Pharmacol Ther. 1990;47:740–6.PubMedGoogle Scholar
  44. 44.
    Reisinger J, Gatterer E, Lang W, et al. Flecainide versus ibutilide for immediate cardioversion of atrial fibrillation of recent onset. Eur Heart J. 2004;25:1318–24.PubMedGoogle Scholar
  45. 45.
    Pritchett EL, Page RL, Carlson M, et al. Efficacy and safety of sustained-release propafenone (propafenone SR) for patients with atrial fibrillation. Am J Cardiol. 2003;15:941–6.Google Scholar
  46. 46.
    Reiffel JA, Murray KT, Prystowsky FN. Propafenone. In: Messerli FH, editor. Cardiovascular drug therapy. 2nd ed. Philadelphia: Saunders Publication; 1996. p. 1349–62.Google Scholar
  47. 47.
    Ahlquist RP. A study of the adrenotropic receptors. Am J Phys. 1948;153:586–99.Google Scholar
  48. 48.
    Lands AM, Arnold A, McAuliff JP, et al. Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967;214:597–8.PubMedGoogle Scholar
  49. 49.
    Hoffman BB, Taylor P. Neurotransmission: the autonomic and somatic motor nervous systems. In: Hardman JG, Limbird LE, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw Hill; 2001.Google Scholar
  50. 50.
    Brodde OE, Bruck H, Leineweber K. Cardiac adrenoreceptors: physiological and pathophysiological relevance. J Pharmacol Sci. 2006;100:323–37.PubMedGoogle Scholar
  51. 51.
    Tamargo J, Delpón E. β-Blockers: Class II antiarrhythmic drugs. In: Zipes DP, editor. Cardiac electrophysiology: from cell to bedside E-book (Kindle Locations 37180–37181): Elsevier Health Sciences.Google Scholar
  52. 52.
    Powell CE, Slater IH. Blocking of inhibitory adrenergic receptors by a dichloro analog of isoproterenol. J Pharmacol Exp Ther. 1958;122:480–8.PubMedGoogle Scholar
  53. 53.
    Black JW, Stephenson JS. Pharmacology of a new adrenergic beta-receptor blocking compound (nethalide). Lancet. 1962;2:311–4.PubMedGoogle Scholar
  54. 54.
    Black JW, Crowther AF, Shanks RG, et al. A new adrenergic beta receptor antagonist. Lancet. 1964;13:1080–1.Google Scholar
  55. 55.
    Frishman WH. A historical perspective on the development of β-adrenergic blockers. J Clin Hypertens. 2007;9:19–27.Google Scholar
  56. 56.
    Frishman WH. Alpha- and beta-adrenergic blocking drugs. In: Frishman WH, Sonnenblick EH, Sica DA, editors. Cardiovascular pharmacotherapeutics. 2nd ed. New York: McGraw Hill; 2003. p. 67–97.Google Scholar
  57. 57.
    Koch-Weser J. Drug therapy: metoprolol. N Engl J Med. 1979;301:698–703.PubMedGoogle Scholar
  58. 58.
    López-Sendón J, Swedberg K, McMurray J, et al. Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J. 2004;25:1341–1362. 18.PubMedGoogle Scholar
  59. 59.
    Workman AJ. Cardiac adrenergic control and atrial fibrillation. Naunyn Schmiedeberg Arch Pharmacol. 2010;381:235–49.Google Scholar
  60. 60.
    Das MK, Zipes DP. Antiarrhythmic and nonantiarrhythmic drugs for sudden cardiac death prevention. J Cardiovasc Pharmacol. 2010;55:438–49.PubMedGoogle Scholar
  61. 61.
    Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008;50:404–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.PubMedGoogle Scholar
  63. 63.
    Mehta D, Curwin J, Gomes JA. Sudden death in coronary artery disease. Acute ischemia versus myocardial substrate. Circulation. 1997;96:3215–23.PubMedGoogle Scholar
  64. 64.
    Gomes JAC, Alexopoulos D, Winters SL, et al. The role of silent ischemia, the arrhythmic substrate and the short-long sequence in the genesis of sudden death. J Am Coll Cardiol. 1989;14:1618–25.PubMedGoogle Scholar
  65. 65.
    Koch-Weser J, Frishman WH. β-Adrenoceptor antagonists: new drugs and new indications. N Engl J Med. 1981;305:500–6.PubMedGoogle Scholar
  66. 66.
    Frishman WH, Furberg CD, Friedewald WT. β-Adrenergic blockade for survivors of acute myocardial infarction. N Engl J Med. 1984;310:830–7.PubMedGoogle Scholar
  67. 67.
    Braunwald E. Treatment of the patient after myocardial infarction. The last decade and the next. N Engl J Med. 1980;302:290–3.PubMedGoogle Scholar
  68. 68.
    MIAMI Trial Research Group. Metoprolol in acute myocardial infarction (MIAMI). A randomised placebo-controlled international trial. Eur Heart J. 1985;6:199–226.Google Scholar
  69. 69.
    Lopressor Intervention Trial Research Group. The Lopressor intervention trial: multicentre study of metoprolol in survivors of acute myocardial infarction. Eur Heart J. 1987;8:1056–64.Google Scholar
  70. 70.
    Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.Google Scholar
  71. 71.
    Stephen SA. Unwanted effects of propranolol. Am J Cardiol. 1966;18:463–8.PubMedGoogle Scholar
  72. 72.
    Frishman WH. Clinical pharmacology of the Beta-Adrenoreceptor blocking drugs. 2nd ed. Norwalk: Appleton-Century-Crofts; 1984.Google Scholar
  73. 73.
    Makkar RR, Fromm BS, Steinman RT, et al. Female gender as a risk factor for Torsades de Pointes associated with cardiovascular drugs. JAMA. 1993;270:2590–7.PubMedGoogle Scholar
  74. 74.
    Arya A. Gender related differences in ventricular repolarization: beyond gonadal steroids. J Cardiovasc Electrophysiol. 2005;16:525–7.PubMedGoogle Scholar
  75. 75.
    Pham TV, Rosen MR. Sex, hormones and repolarization. Cardiovasc Res. 2002;15:750–1.Google Scholar
  76. 76.
    Charlier R, Deltour G, Tondeur R, Binon F. Recherches dans la serie des benzofurannes VII. Etude phamacologique preliminaire du butyl1-2 (diodo-3′,5′ b-N-diethylaminoethoxy-4′ benzoyl)-3 benzofurannes. Arch Int Pharmacodyn Ther. 1962;139:255–64.PubMedGoogle Scholar
  77. 77.
    Rosenbaum MB, Chiale PA, Ryba D, Elizari MV. Control of tachyarrhythmias associated with Wolff-Parkinson-white syndrome by amiodarone hydrochloride. Am J Cardiol. 1975;34:215.Google Scholar
  78. 78.
    Rosenbaum MB, Chiale PA, Halpern MS. Clinical efficacy of amiodarone as an antiarrhythmic agent. Am J Cardiol. 1976;38:934.PubMedGoogle Scholar
  79. 79.
    Heger J, Prystowsky EN, Jackman WM, Naccarelli GV, Warfel KA, Rinkenberger RL, Zipes DP. Amiodarone: clinical efficacy and electrophysiology during long-term therapy for recurrent ventricular tachycardiaorventricular fibrillation. N Engl J Med. 1981;305:539–45.PubMedGoogle Scholar
  80. 80.
    Nademanee K, Hendrickson JA, Cannom DS, Goldreyer BN, Singh BN. Control of refractory life-threatening ventricular tachyarrhythmias by amiodarone. Am Heart J. 1981;101:759–68.PubMedGoogle Scholar
  81. 81.
    Fogoros RN, Anderson KP, Winkle RA, Swerdlow CD, Mason JW. Amiodarone: clinical efficacy and toxicity in 96 patients with recurrent, drug-refractory arrhythmias. Circulation. 1983;68:88–94.PubMedGoogle Scholar
  82. 82.
    Haffajee CI, Love JC, Canada AT, Lesko LJ, Asdourian G, Alpert JS. Clinical pharmacokinetics and efficacy of amiodarone for refractory tachyarrhythmias. Circulation. 1983;67:1347–55.PubMedGoogle Scholar
  83. 83.
    Gomes JAC, Kang PS, et al. Electrophysiologic effects and mechanism of termination of supraventricular tachycardia by intravenous amiodarone. Am Heart J. 1984;107:214–21.PubMedGoogle Scholar
  84. 84.
    Hariman RJ, Gomes JAC, Kang PS, El-Sherif N. Effects of intravenous amiodarone in patients with inducible repetitive ventricular responses and ventricular tachycardia. Am Heart J. 1984;107:1109–17.PubMedGoogle Scholar
  85. 85.
    Saksena S, Rothbart ST, Shah Y, Cappello G. Clinical efficacy and electropharmacology of continuous intravenous amiodarone infusion and chronic oral amiodarone in refractory ventricular tachycardia. Am J Cardiol. 1984;54:347–52.PubMedGoogle Scholar
  86. 86.
    Dusman RE, Stanton MS, Miles WM, et al. Clinical features of amiodarone-induced pulmonary toxicity. Circulation. 1990;82:51–9.PubMedGoogle Scholar
  87. 87.
    Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med. 2005;118:706–14.PubMedGoogle Scholar
  88. 88.
    Mantyjarvi M, Tuppurainen K, Ikaheimo K. Ocular side effects of amiodarone. Surv Ophthalmol. 1998;42:360–6.PubMedGoogle Scholar
  89. 89.
    Cho YK, Kim YN, Han SW, et al. Clinical reviews about overall incidence of adverse effects in amiodarone treatment. Keimyung Med J. 2007;26:87–95.Google Scholar
  90. 90.
    Vorperian VR, Havighurst TC, Miller S, January CT. Adverse effects of low dose Amiodarone: a meta-analysis. J Am Coll Cardiol. 1977;30:791–8.Google Scholar
  91. 91.
    Cairns JA, Connolly SJ, Roberts R, Gent M, for the Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Randomized trial of out- come after myocardial infarction in patients with frequent or repetitive ventricular premature depolarizations: CAMIAT. Lancet. 1997;349:675–82.PubMedGoogle Scholar
  92. 92.
    Julian DG, Camm AJ, Frangin G, Janse MJ, Munoz A, Schwartz PJ, Simon P, for the European Myocardial Infarct Amiodarone Trial Investigators. Randomized trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. Lancet. 1997;349:667–74.PubMedGoogle Scholar
  93. 93.
    Singh BN, Vaughan Williams EM. The effect of amiodarone, a new antianginal drug, on cardiac muscle. Br J Pharmacol. 1970;39:657–67.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Singh BN. Pharmacological actions of certain cardiac drugs and hormones: focus on antiarrhythmic mechanisms. (thesis.) Hertford College and the University of Oxford; 1971. Mount Kisco: Futura Publishing; 1991. p. 1–98.Google Scholar
  95. 95.
    Gy PJ, Nemeth M, Krassoi I, Mester L, Hala O, Varro A. Differential electro-physiologic effects of chronically administered amiodarone on canine Purkinje fibers versus ventricular muscle. J Pharmacol Exp Ther. 1996;1:187–96.Google Scholar
  96. 96.
    Sicouri S, Moro S, Litovsky S, Elizari M, Antzelevitch C. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol. 1997. in press.Google Scholar
  97. 97.
    Cui G, Sen L, Sager P, Uppal P, Singh BN. Effects of amiodarone, sematilide, and sotalol on QT dispersion. Am J Cardiol. 1994;74:896–900.PubMedGoogle Scholar
  98. 98.
    Sager PT, Uppal P, Follmer C, Antimisiaris M, Pruitt C, Singh BN. Frequency-dependent electrophysiologic effects of amiodarone in humans. Circulation. 1993;88:1063–71.PubMedGoogle Scholar
  99. 99.
    Hohnloser S, Klingenheben T, Singh BN. Amiodarone-associated proarrhythmic effects: a review with special reference to torsades de pointes tachycardia. Ann Intern Med. 1994;121:529–35.PubMedGoogle Scholar
  100. 100.
    Lee KS. lbutilide, a new compound with potent class 111antia&ythmic activity, activates a slow inward Na current in guinea pig ventricular cells. J Pharmacol Exp Ther. 1992;262:99–108.PubMedGoogle Scholar
  101. 101.
    Howard PA. Ibutilide: an antiarrhythmic agent for the treatment of atrial fibrillation or flutter. Ann Pharmacother. 1999;
  102. 102.
    Ellenbogen KA, Stamler BS, Wood MA, et al. Efficacy of intravenous Ibutilide for rapid termination of atrial fibrillation and atrial flutter: a dose-response study. J Am Coll Cardiol. 1996;28:130–6.PubMedGoogle Scholar
  103. 103.
    Stambler BS, Portnow AS, Wood MA, et al. Proven efficacy of repeated dose intravenous ibutilide, a class III antiarrhythmic drug, for rapid termination of chronic atrial flutter or fibrillation: results of a multicenter placebo controlled study. J Am Coll Cardiol. 1995;25:230A.Google Scholar
  104. 104.
    Stambler BS, Wood MA, Ellenbogen KA. Antiarrhythmic action of intrvenous Ibutilide compared with procainamide during human atrial flutter and fibrillation. Electrophysiological determinants of enhanced conversion efficacy. Circulation. 1997;96:4298–306.PubMedGoogle Scholar
  105. 105.
    Milan DJ, Saul JP, Somberg JC, Molnar J. Efficacy of intravenous and oral Sotalol in pharmacologic conversion of atrial fibrillation: a systematic review and meta-analysis. Cardiology. 2017;136:52–60.PubMedGoogle Scholar
  106. 106.
    Kafkas NV, Patsilinakos SP, Mertzanos GA. Conversion efficacy of intravenous ibutilide compared with intravenous amiodarone in patients with recent-onset atrial fibrillation and atrial flutter. Int J Cardiol. 2007;118:321–5.PubMedGoogle Scholar
  107. 107.
    Lish PM, Weikel JH, Dungan KW. Pharmacological and toxicological properties of two new β-adrenergic receptor antagonists. J Pharmacol Exp Ther. 1965;149(2):161–73.PubMedGoogle Scholar
  108. 108.
    Singh BN. Control of cardiac arrhythmias with sotalol, a broad–spectrum anti-arrhythmic with beta-blocking effects and class III activity. Am J Cardiol. 1990;765:1A–84A.Google Scholar
  109. 109.
    Singh BN, Deedwania P, Nademanee K, Ward A, Sorkin EM. Sotalol: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use. Drugs. 1987;34:311–49.PubMedGoogle Scholar
  110. 110.
    Singh BN, Nademanee K. Sotalol: a beta blocker with unique antiarrhythmic properties. Am Heart J. 1987;114:121–39.PubMedGoogle Scholar
  111. 111.
    Singh BN, Vaughn Williams EM. A third class of antiarrhythmic action. Effects on atrial and ventricular potentials, and other pharmacologic action on cardiac muscle of MJ 1999 and AH 3474. Br J Pharmacol. 1970;39:675–87.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Levy JV, Richards V. Inotropic and metabolic effects of three betaadrenergic receptor blocking drugs on isolated rabbit left atria. J Phamacol Exp Ther. 1965;150:361–9.Google Scholar
  113. 113.
    HofTmann RP, Grupp G. The effects of sotalol and propranolol on contractile force and atrioventricular conduction time of the dog heart in sifu. Dis Chest. 1969;55:22%234.Google Scholar
  114. 114.
    Aberg G, Dzedin T, Lundholm L, et al. A comparative study of some cardiovascular effects of sotalol (MJ 1999) and propranolol. Life Sci. 1969;8:35>365.Google Scholar
  115. 115.
    Fitzgerald JD, Wale JL, Austin M. The haemodynamic effects of (±)-propranolol, dexpropranolol, oxprenolol, practolol and sotalol in anaesthetized dogs. Ew J Pharmacol. l972;17:123–34.Google Scholar
  116. 116.
    Brooks H, Banas J Jr, Meister S, Szucs M Jr, DaIen J, Dexter L. Sotalol- induced beta blockade in cardiac patients. Circulation. 1970;42:99–110.PubMedGoogle Scholar
  117. 117.
    Mahmarian JJ, Verani MS, Hohmann T, et al. The hemodynamic effects of sotaIo1 and quinidine: analysis by use of rest and exercise gated radionuclide angiography. Circulation. 1987;76:324–31.PubMedGoogle Scholar
  118. 118.
    Winters SL, Kukin M, Elena Pe RN, et al. Effect of Oral Sotalol on systemic hemodynamics and programmed electrical stimulation in patients with ventricular arrhythmias and structural heart disease. Am J Cardiol. 1993;72:38A–43A.PubMedGoogle Scholar
  119. 119.
    Julian DG, Jackson FS, Prescott RJ, Szekely P. Controlled trial of sotalol for one year after myocardial infarction. Lancet. 1982;1:1142–7.PubMedGoogle Scholar
  120. 120.
    Mason JW, for the Electrophysiologic Study versus Electrocardiographic Monitoring Investigators. A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias. N Engl J Med. 1993;329:452–8.PubMedGoogle Scholar
  121. 121.
    Ho DS, Zecchin RP, Richards DA, Uther JB, Ross DL. Double-blind trial of lignocaine versus sotalol for acute termination of spontaneous sustained ventricular tachycardia. Lancet. 1994;344:18–23.PubMedGoogle Scholar
  122. 122.
    Kuhlkamp V, Mewis C, Mermi J, et al. Suppression of sustained ventricular tachyarrhythmias: a comparison of d, l-sotalol with no antiarrhythmic drug treatment. J Am Coll Cardiol. 1999;33:46–52.PubMedGoogle Scholar
  123. 123.
    Hohnloser SH, Dorian P, Roberts R, et al. Effect of Amiodarone and Sotalol on ventricular defibrillation threshold. The optimal pharmacological therapy in cardioverter defibrillator patients (OPTIC) trial. Circulation. 2006;114:104–9.PubMedGoogle Scholar
  124. 124.
    The AFFIRM. First antiarrhythmic drug substudy investigators maintenance of sinus rhythm in patients with atrial fibrillation an AFFIRM substudy of the first antiarrhythmic drug. J Am Coll Cardiol. 2003;42:20–9.Google Scholar
  125. 125.
    Piccini JP, Al-Khatib SM, Wojdyla DM, et al. Comparison of safety of Sotalol versus Amiodarone in patients with atrial fibrillation and coronary artery disease. Am J Cardiol. 2014;114:716–22.PubMedGoogle Scholar
  126. 126.
    Gomes A, Ip J, Santoni-Rugiu F, et al. Oral d,l Sotalol reduces the incidence of postoperative atrial fibrillation in coronary artery bypass surgery patients: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 1999;34:334–9.PubMedGoogle Scholar
  127. 127.
    Kinelans TK, Lathrop DA, Nanasi PP, et al. Rate and concentration –dependent effects of UK-68,798, a potent new class III antiarrhythmic, on canine Purkinje fibre action potential duration and Vmax. Br J Pharmacol. 1991;103:1568–72.Google Scholar
  128. 128.
    Sedwick MI, Rasmussen HS, Cobbe SM. Clinical and electrophysiologic effects of intravenous dofetilide (UK-68,798), a new class III antiarrhythmic drug, in patients with angina pectoris. Am J Cardiol. 1992;69:513–7.Google Scholar
  129. 129.
    Kobayashi Y, Atarashu H, Kuruma IT, et al. Clinical and electrophysiologic effects of dofetilide in patients with supraventricular tachyarrhythmias. J Cardiovasc Pharmacol. 1997;30:367–73.PubMedGoogle Scholar
  130. 130.
    Gremillion ST, Echt DS, Smith NA, et al. Beneficial effects of intravenous dofetilide in patients undergoing ventricular defibrillation testing (abstract). Circulation. 1992;866(suppl 1):I–264.Google Scholar
  131. 131.
    Bailey WM, Nandemanee K, Edwards J, et al. Electrophysiologic and hemodynamic effects of dofetilide in patients with severe left ventricular dysfunction (abstract). Circulation. 1992;86(suppl):I-265.Google Scholar
  132. 132.
    Kalus JS, Vincent F. Mauro Dofetilide: a Class III-specific antiarrhythmic agent. Ann Pharmacother. 2000;34:44–56.PubMedGoogle Scholar
  133. 133.
    Campbell TJ, Greenbaum RA, Channer KS, Dairymple HW, Kingma JH, Santini M, Theisen K, Toivonen K. Mortality in patients with atrial fibrillation - 1 year follow-up of EMERALD (European and Australian multicenter evaluative research on atrial fibrillation dofetilide). J Am Coll Cardiol. 2000;35:154A–5A.Google Scholar
  134. 134.
    Greenbaum R, Campbell TJ, Channer KS, Dairymple HW, Kingma JH, Santini M, Theisen K, Tolvonnen LK. Conversion of atrial fibrillation and maintenance of sinus rhythm by dofetilide: the emerald (European and Australian multicenter evaluative research on atrial fibrillation dofetilide) study. Circulation. 1998;98:I 633.Google Scholar
  135. 135.
    Singh S, Zoble RG, Yellen L, Brodsky MA, Feld GK, Berk M, Billing CB Jr. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385–90.PubMedGoogle Scholar
  136. 136.
    Brachmann J, Haverkamp W, Johns J, Zehender M, Kingma HG, Wiecha J. The efficacy and safety of oral dofetilide in patients with sustained ventricular tachycardia (abstract). Circulation. 1992;86(suppl):I-265.Google Scholar
  137. 137.
    Pedersen OD, Bagger H, Keller N, et al. Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function: a Danish investigations of arrhythmia and mortality on dofetilide (DIAMOND) substudy. Circulation. 2001;104:292–6.PubMedGoogle Scholar
  138. 138.
    Torp-Pedersen C, Møller M, Bloch-Thomsen PE, et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish investigations of arrhythmia and mortality on Dofetilide Study Group. N Engl J Med. 1999;341:857–65.PubMedGoogle Scholar
  139. 139.
    Torp-Pedersen C, Møller M, Køber L, CAMM AJ. Dofetilide for the treatment of atrial fibrillation in patients with congestive heart failure. Eur Heart J. 2000;21:1204–6.PubMedGoogle Scholar
  140. 140.
    Abraham JEM, Saliba WI, Vekstein C, et al. Safety of oral Dofetilide for rhythm control of atrial fibrillation and atrial flutter. Circ Arrhythm Electrophysiol. 2015;8:772–6.PubMedGoogle Scholar
  141. 141.
    Wegener FT, Ehrlich JR, Hohnloser SH. Dronedarone: an emerging agent with rhythm- and rate-controlling effects. J Cardiovasc Electrophysiol. 2006;17(Suppl 2):S17–20.PubMedGoogle Scholar
  142. 142.
    Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375:1212–23.PubMedGoogle Scholar
  143. 143.
    Gautier P, Guillemare E, Marion A, Bertrand JP, Tourneur Y, Nisato D. Electrophysiologic characterization of dronedarone in guinea pig ventricular cells. J Cardiovasc Pharmacol. 2003;41:191–202.PubMedGoogle Scholar
  144. 144.
    Touboul P, Brugada J, Capucci A, Crijns HJ, Edvardsson N, Hohnloser SH. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur Heart J. 2003;24:1481–7.PubMedGoogle Scholar
  145. 145.
    Singh BN, Connolly SJ, Crijns HJ, Roy D, et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med. 2007;357:987–99.PubMedGoogle Scholar
  146. 146.
    Hohnloser SH, Crijns HJGM, van Eickels M, for the ATHENA Investigators, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360:668–78.PubMedGoogle Scholar
  147. 147.
    Fuster V, Rydén LE, Cannom DS, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101–98.PubMedGoogle Scholar
  148. 148.
    Camm AJ, Lip GY, De Caterina R, et al. Focused update of the ESC guidelines for the management of atrial fibrillation: an update of the 2010 ESC guidelines for the management of atrial fibrillation: developed with the special contribution of the European Heart Rhythm Association. Europace. 2012;14:1385–413.PubMedGoogle Scholar
  149. 149.
    Davy JM, Herold M, Hoglund C, et al. Dronedarone for the control of ventricular rate in permanent atrial fibrillation: the efficacy and safety of dronedarone for the control of ventricular rate during atrial fibrillation (ERATO) study. Am Heart J. 2008;156:527–9.PubMedGoogle Scholar
  150. 150.
    Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678–87.PubMedGoogle Scholar
  151. 151.
    Lalevee N, Nargeot J, Barrere-Lemaire S, et al. Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes. J Cardiovasc Electrophysiol. 2003;14:885–90.PubMedGoogle Scholar
  152. 152.
    Connolly S, Camm J, Halperin J, for the PALLAS Investigators, et al. Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011;365:2268–76.PubMedGoogle Scholar
  153. 153.
    Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol Lond. 1883;4:29–42.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Stiles PG. On the rhythmic activity of the oesophagus and the influence upon it of various media. Am J Phys. 1901;5:338–57.Google Scholar
  155. 155.
    Kamada T, Kinosita H. Disturbances initiated from naked surface of muscle protoplasm. Jpn J Zool. 1943;10:469–93.Google Scholar
  156. 156.
    Heilbrunn LV, Wiercinski FJ. The action of various cations on muscle protoplasm. J Cell Comp Physiol. 1947;29:15–32.PubMedGoogle Scholar
  157. 157.
    Melville KI, Shister HE, Huq S. Iproveratril: experimental data on coronary dilatation and antiarrhythmic action. Can Med Assoc J. 1964;90:761–70.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Sato M, Nagao T, Yamaguchi I, Nakajima H, Kiyomoto A. Pharmacological studies on a new l,5-benzothiazepine derivative (CRD-401). Arzneimittelforschung. 1971;21:1338–43.PubMedGoogle Scholar
  159. 159.
    Sandler G, Clyton GA, Thorncraft S. Clinical evaluation of verapamil in angina pectoris. Br Med J. 1968;3:224–7.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Sbeader W. Drug discovery, a history. Chichester: Wiley; 2005. p. 132.Google Scholar
  161. 161.
    Shamroth L, Krikler DM, Garrett C. Immediate effect of intravenous verapamil in cardiac arrhythmias. Br Med J. 1972;1:660–2.Google Scholar
  162. 162.
    Darbar D. Standard antiarrhythmic drugs. In: Zipes D, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 6th ed. Philadelphia: Saunders Elsevier; 2014.Google Scholar
  163. 163.
    Schamroth L, Antman E. Calcium channel blocking agents in the treatment of cardiac arrhythmias. In: Stone PH, Antman EM, editors. Calcium channel blocking agents in the treatment of cardiovascular disorders. Mount Cisco: Futura Publishing Company Inc.; 1983. p. 347–75.Google Scholar
  164. 164.
    Camm AJ, Kirchhof P, Lip GY, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology ESC. Europace. 2010;12:1360–420.PubMedGoogle Scholar
  165. 165.
    Nademanee K, Singh BN. Control of cardiac arrhythmias by calcium antagonism. Ann N Y Acad Sci. 1988;522:536–52.PubMedGoogle Scholar
  166. 166.
    Kapa S, Gaba P, DeSimone CV, Asirvatham SJ. Fascicular ventricular arrhythmias pathophysiologic mechanisms, anatomical constructs, and advances in approaches to management. Circ Arrhythm Electrophysiol. 2017;10:e002476.PubMedGoogle Scholar
  167. 167.
    Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010;62:760–81.PubMedPubMedCentralGoogle Scholar
  168. 168.
    van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14:175–83.PubMedGoogle Scholar
  169. 169.
    Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213–37.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Eltzschig HK. Adenosine: an old drug newly discovered. Anesthesiology. 2009;111(4):904–15.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Honey RM, Ritchie WT, Thomson WAR. The action of adenosine upon the human heart. Q J Med. 1930;23:485.Google Scholar
  172. 172.
    Jezer A, Oppenheimer BS, Schwartz SP. The effect of adenosine on cardiac irregularities in man. Am Heart J. 1933;9:252.Google Scholar
  173. 173.
    Dimarco JP, Sellers TD, Berne RM, et al. Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation. 1983;68(6):1254–63.PubMedGoogle Scholar
  174. 174.
    Belhassen B, Pelleg A. Electrophysiologic effects of adenosine triphosphate and adenosine on the mammalian heart: clinical and experimental aspects. J Am Coll Cardiol. 1984;4:414–24.PubMedGoogle Scholar
  175. 175.
    Delacretaz E. Clinical practice. Supraventricular tachycardia. N Engl J Med. 2006;354:1039–1051. [PubMed].PubMedGoogle Scholar
  176. 176.
    Plaschke K, Bockler D, Schumacher H, Martin E, Bardenheuer HJ. Adenosine-induced cardiac arrest and EEG changes in patients with thoracic aorta endovascular repair. Br J Anaesth. 2006;96:310–316. [PubMed].PubMedGoogle Scholar
  177. 177.
    Fang TD, Lippmann M, Kakazu C, et al. High-dose adenosine-induced asystole assisting accurate deployment of thoracic stent grafts in conscious patients. Ann Vasc Surg. 2008;22:602–607. [PubMed].PubMedGoogle Scholar
  178. 178.
    Behçet A. The source-synthesis- history and use of atropine. JAEM. 2014;13:2–3.Google Scholar
  179. 179.
    Hardman JG, Limbird LE, Gilman AG, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: Mc-Graw-Hill; 2011. p. 93–198.Google Scholar
  180. 180.
    Biography of Heinrich Friedrich Georg Mein (1799–1864) (in German).Google Scholar
  181. 181.
    Geiger, Hesse. Darstellung des Atropins (preparation of atropine). Annalen der Pharmacie. 1833;5:43–81.Google Scholar
  182. 182.
    Willstatter R. Umwandlung von Tropidin in Tropin (Conversion of tropidine into tropine), Berichte der Deutschen chemischen Gesellschaft zu. Ther Ber. 1901;34:3163–5.Google Scholar
  183. 183.
    Rang, Dale, Ritter, More. Pharmacology: Elsevier; 2003. p. 139.Google Scholar
  184. 184.
    Gilman A, Rall T, Nies A, et al. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: Macmillan; 1990. p. 814.Google Scholar
  185. 185.
    Furbee B. Chapter 47, Neurotoxic plants. In: Clinical neurotoxicity. Philadelphia, PA. Saunders Elsevier; 2009. p. 528.Google Scholar
  186. 186.
    Ujváry I. Pest control agents from natural products. In: Hayes’ handbook of pesticide toxicology. 3rd ed; 2010.Google Scholar
  187. 187.
    Silverman ME. William Withering and an account of the Foxglove. Clin Cardiol. 1989;12:416–8.Google Scholar
  188. 188.
    Withering W. An account of the Foxglove and some of its medical uses. M. Swinney, Birmingham (1785) (The Classics of Medicine Library, Special Edition, 1979).Google Scholar
  189. 189.
    Katz AM. Effect of digitalis on cell biochemistry: sodium pump inhibition. J Am Coll Cardiol. 1985;5:16A–21A.PubMedGoogle Scholar
  190. 190.
    Gomes JAC, Dhatt MS, Akhtar M, et al. Effects of digitalis on ventricular myocardial and his-Purkinje refractoriness and reentry in man. Am J Cardiol. 1978;42:931–8.PubMedGoogle Scholar
  191. 191.
    Gomes JAC, Damato AN, Bobb GA, Lau SH. The effect of digitalis on refractoriness of the intact Canine His-Purkinje system. Circulation. 1978;58:284.PubMedGoogle Scholar
  192. 192.
    Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33.Google Scholar
  193. 193.
    Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289:871–8.PubMedGoogle Scholar
  194. 194.
    Benjamin Truitt medieval trial by ordeal: definition & history. Chapter 4/Lesson 15. Scholar
  195. 195.
    Sanaei-Zadeh H, Valian Z, Zamani N, et al. Clinical features and successful management of suicidal digoxin toxicity without use of digoxin-specific antibody (Fab) fragments--is it possible? Trop Dr. 2011;41:108–10.Google Scholar
  196. 196.
    Rosen MR. Cellular electrophysiology of digitalis toxicity. J Am Coll Cardiol. 1985;5:22A–34A.PubMedGoogle Scholar
  197. 197.
    Smith TW, Haber E, Yeatmen L, Butler VP Jr. Reversal of advanced digoxin intoxication with fab fragments of digoxin-specific antibodies. N Engl J Med. 1976;294(15):797.PubMedGoogle Scholar
  198. 198.
    Fox K, Ford I, Tendera M, Ferrari R, on behalf of the BEAUTIFUL Investigators. Ivabradine for patients with stable coronary artery disease and left-ventricular dysfunction (BEAUTIFUL): a randomized, double-blind, placebo-controlled trial. Lancet. 2008;372:807–16.PubMedGoogle Scholar
  199. 199.
    Mulder P, Barbier S, Chagraoui A, et al. Long –term heart rate induced by the selective if current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Eur Heart J. 2011;32:2395–404.Google Scholar
  200. 200.
    Bohm M, Borer J, Ford I, et al. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol. 2013;102:11–22.PubMedGoogle Scholar
  201. 201.
    Koruth JS, Lala A, Sean Pinney M, et al. The clinical use of Ivabradine. J Am Coll Cardiol. 2017;70:1777–84.PubMedGoogle Scholar
  202. 202.
    Schulze V, Steiner S, Hennersdorf M, Strauer BE. Ivabradine as an alternative therapeutic trial in the treatment of inappropriate sinus tachycardia: a case report. Cardiology. 2008;110:206–8.PubMedGoogle Scholar
  203. 203.
    Calò L, Rebecchi M, Sette A, et al. Efficacy of ivabradine administration in patients affected by inappropriate sinus tachycardia. Heart Rhythm. 2010;7:1318–23.PubMedGoogle Scholar
  204. 204.
    Ptaszynski P, Kaczmarek K, Ruta J, Klingenheben T, Wranicz JK. Metoprolol succinate vs. ivabradine in the treatment of inappropriate sinus tachycardia in patients unresponsive to previous pharmacological therapy. Europace. 2013;15:116–21.PubMedGoogle Scholar
  205. 205.
    Cappato R, Castelvecchio S, Ricci C, et al. Clinical efficacy of ivabradine in patients with inappropriate sinus tachycardia: a prospective, randomized, placebo-controlled, double-blind, crossover evaluation. J Am Coll Cardiol. 2012;60:1323–9.PubMedGoogle Scholar
  206. 206.
    Shen WK, Sheldon RS, Benditt DG, et al. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J Am Coll Cardiol. 2017;70:620–63.PubMedGoogle Scholar
  207. 207.
    McDonald C, Frith J, Newton J. Single centre experience of ivabradine in postural orthostatic tachycardia syndrome. Europace. 2011;13:427–30.PubMedGoogle Scholar
  208. 208.
    Sutton R, Salukhe T. Ivabradine in the treatment of orthostatic intolerance. Europace. 2011;13:306–7.PubMedGoogle Scholar
  209. 209.
    Dieks JK, Klehs S, Müller MJ, Paul T, Krause U. Adjunctive ivabradine in combination with amiodarone: a novel therapy for pediatric congenital junctional ectopic tachycardia. Heart Rhythm. 2016;13:1297–302.PubMedGoogle Scholar
  210. 210.
    Ptaszynski P, Kaczmarek K, Ruta J, Klingenheben T, Wranicz JK. Ivabradine in the treatment of inappropriate sinus tachycardia in patients after successful radiofrequency catheter ablation of atrioventricular node slow pathway. Pacing Clin Electrophysiol. 2013;36:42–9.PubMedGoogle Scholar
  211. 211.
    Enriquez AD, Economy KE, Tedrow UB. Contemporary mangementr of arrhythmias during pregnancy. Circ Arrhythm Electrophysiol. 2014;7:961–7.PubMedGoogle Scholar
  212. 212.
    Shah A, Moon-Grady A, Bhogal N, et al. Effectiveness of sotalol as first-line therapy for fetal supraventricular tachyarrhythmias. Am J Cardiol. 2012;109:1614.PubMedGoogle Scholar
  213. 213.
    Andrade JG, Connolly SJ, Dorian P, et al. Antiarrhythmic use from 1991 to 2007: insights from the Canadian Registry of Atrial Fibrillation (CARAF I and II). Heart Rhythm. 2010;7:1171–7.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Icahn School of MedicineMount Sinai HospitalNew YorkUSA

Personalised recommendations