Advertisement

Elements of Statistical Thermodynamics and Quantum Theory

  • Zhuomin M. ZhangEmail author
Chapter
  • 168 Downloads
Part of the Mechanical Engineering Series book series (MES)

Abstract

This chapter starts with a statistical model of independent particles and a brief introduction to the basic principles of quantum mechanics. The three important distributions are derived based on the statistics for different types of particles. The microscopic descriptions and results are then linked to macroscopic quantities and the laws of thermodynamics. The application to ideal gases is presented in this chapter, while the applications to blackbody radiation, lattice vibration, free electrons in metals, and electrons and holes in semiconductors will be deferred to later chapters.

Keywords

Classical statistical mechanics Independent particles Quantum statistics Energy level Equilibrium distribution functions Maxwell’s velocity distribution function Properties of ideal gas Degrees of freedom Specific heat Basics of quantum mechanics Photon emission and absorption Mass and energy relation in special relativity 

References

  1. 1.
    C.L. Tien, J.H. Lienhard, Statistical Thermodynamics (Hemisphere, New York, 1985)Google Scholar
  2. 2.
    R.E. Sonntag, G.J. van Wylen, Fundamentals of Statistical Thermodynamics (Wiley, New York, 1966)Google Scholar
  3. 3.
    J.E. Lay, Statistical Mechanics and Thermodynamics of Matter (Harper Collins Publishers, New York, 1990)Google Scholar
  4. 4.
    C.E. Hecht, Statistical Thermodynamics and Kinetic Theory (W.H. Freeman and Company, New York, 1990)Google Scholar
  5. 5.
    V.P. Carey, Statistical Thermodynamics and Microscale Thermophysics (Cambridge University Press, Cambridge, UK, 1999)CrossRefGoogle Scholar
  6. 6.
    F.C. Chou, J.R. Lukes, X.G. Liang, K. Takahashi, C.L. Tien, Molecular dynamics in microscale thermophysical engineering. Annu. Rev. Heat Transfer 10, 144–176 (1999)CrossRefGoogle Scholar
  7. 7.
    S. Maruyama, Molecular dynamics method for microscale heat transfer, in Advances in Numerical Heat Transfer, vol. 2, ed. by W.J. Minkowycz, E.M. Sparrow (Taylor and Francis, New York, 2000), pp. 189–226Google Scholar
  8. 8.
    D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Prentice Hall, New York, 2005)Google Scholar
  9. 9.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999)CrossRefGoogle Scholar
  10. 10.
    G. Burns, High-Temperature Superconductivity: An Introduction (Academic Press, Boston, MA, 1992)Google Scholar
  11. 11.
    A. Einstein, Zur quantentheorie der strahlung. Phys. Z. 18, 121–128 (1917); English translation in Sources of Quantum Mechanics, B.L. Van der Waerden (ed.), (North-Holland Publishing Company, Amsterdam, the Netherlands, 1967)Google Scholar
  12. 12.
    H.P. Baltes, On the validity of Kirchhoff’s law of heat radiation for a body in a nonequilibrium environment. Progress Opt. 13, 1–25 (1976)CrossRefGoogle Scholar
  13. 13.
    J.P. Gordon, H.J. Zeiger, C.H. Townes, The maser—New type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 95, 1264–1274 (1955); A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958)Google Scholar
  14. 14.
    R. Wolfson, J.M. Pasachoff, Physics with Modern Physics for Scientists and Engineers, 3rd edn. (Addison-Wesley, Reading, MA, 1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MariettaUSA

Personalised recommendations