Advertisement

Nonlinearity, Geometry and Field Theory Solitons

  • Nicholas S. MantonEmail author
Chapter
  • 156 Downloads
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 32)

Abstract

Topological solitons occur in many types of nonlinear field theory. Their motion and interactions can be simulated classically, and can be well approximated by a finite-dimensional dynamics on a moduli space of collective coordinates. Interesting phenomena related to the curvature and topology of moduli spaces are illustrated here through the examples of vortices, sigma model lumps, and monopoles. Collective coordinate dynamics can be quantized, and it is shown how quantized Skyrmion dynamics is used to understand aspects of nuclear physics. A novel model for nuclear fusion, based on wormhole geometry, is also proposed.

Notes

Acknowledgements

The half-wormhole model for Oxygen-16 interacting with an alpha particle was developed following a talk by Takashi Nakatsukasa and a related question concerning Newton’s cradle by Panagiota Papakonstantinou, at the 1st APCPT-TRIUMF Joint Workshop, Pohang, Korea, 2018. I also thank J. Martin Speight and Maciej Dunajski for helpful discussions. This work has been partially supported by STFC consolidated grant ST/P000681/1.

References

  1. 1.
    N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    E.J. Weinberg, Classical Solutions in Quantum Field Theory (Cambridge University Press, Cambridge, 2012)zbMATHCrossRefGoogle Scholar
  3. 3.
    N.S. Manton, Phys. Lett. B 110, 54 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    E.B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976)Google Scholar
  5. 5.
    M. Shifman, A. Yung, Supersymmetric Solitons (Cambridge University Press, Cambridge, 2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    N.S. Manton, K. Oleś, A. Wereszczyński, JHEP 2019, 86 (2019)CrossRefGoogle Scholar
  7. 7.
    Y.N. Ovchinnikov, I.M. Sigal, Nonlinearity 11, 1277 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    T.H.R. Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (1961)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    C.H. Taubes, Commun. Math. Phys. 72, 277 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Samols, Commun. Math. Phys. 145, 149 (1992)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.A. Belavin, A.M. Polyakov, JETP Lett. 22, 245 (1975)ADSGoogle Scholar
  15. 15.
    A.M. Din, W.J. Zakrzewski, Nucl. Phys. B 259, 667 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    L.A. Sadun, J.M. Speight, Lett. Math. Phys. 43, 329 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Piette, W.J. Zakrzewski, Nonlinearity 9, 897 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.F. Atiyah, N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988)Google Scholar
  19. 19.
    D. Foster, S. Krusch, Nucl. Phys. B 897, 697 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    D. Foster, N.S. Manton, Nucl. Phys. B 899, 513 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    K. Wen, T. Nakatsukasa, Phys. Rev. C 96, 014610 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    P. Papakonstantinou, A.I.P. Conf, Proc. 1947, 020023 (2018)Google Scholar
  23. 23.
    A.E. Litherland, J.A. Kuehner, H.E. Gove, M.A. Clark, E. Almqvist, Phys. Rev. Lett. 7, 98 (1961)ADSCrossRefGoogle Scholar
  24. 24.
    M. Bouten, Nuovo Cim. 26, 63 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Katō, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931)ADSCrossRefGoogle Scholar
  27. 27.
    J. Schwinger, Science 165, 757 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    N.S. Manton, Ann. Phys. 256, 114 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    N.M. Romão, J. Math. Phys. 42, 3445 (2001)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Eriksson, N.M. Romão, Kähler quantization of vortex moduli. arXiv:1612.08505
  31. 31.
    A. Sen, Phys. Lett. B 329, 217 (1994)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    G. Segal, A. Selby, Commun. Math. Phys. 177, 775 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    B.J. Schroers, Nucl. Phys. B 367, 177 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys. B 228, 552 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D.S. Freed, J. Diff. Geom. 80, 45 (2008)CrossRefGoogle Scholar
  36. 36.
    A. Jackson, A.D. Jackson, V. Pasquier, Nucl. Phys. A 432, 567 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    N.S. Manton, Phys. Rev. Lett. 60, 1916 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    M.F. Atiyah, N.S. Manton, Commun. Math. Phys. 153, 391 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    E. Braaten, S. Townsend, L. Carson, Phys. Lett. B 235, 147 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    E. Braaten, L. Carson, Phys. Rev. D 38, 3525 (1988)ADSCrossRefGoogle Scholar
  42. 42.
    L. Carson, Phys. Rev. Lett. 66, 1406 (1991)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    T.S. Walhout, Nucl. Phys. A 547, 423 (1992)ADSCrossRefGoogle Scholar
  44. 44.
    P. Irwin, Phys. Rev. D 61, 114024 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    R.A. Battye, N.S. Manton, P.M. Sutcliffe, S.W. Wood, Phys. Rev. C 80, 034323 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    P.H.C. Lau, N.S. Manton, Phys. Rev. Lett. 113, 232503 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    R.A. Leese, N.S. Manton, B.J. Schroers, Nucl. Phys. B 442, 228 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    C.J. Halcrow, Nucl. Phys. B 904, 106 (2016)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J.I. Rawlinson, Nucl. Phys. B 949, 114800 (2019)MathSciNetCrossRefGoogle Scholar
  50. 50.
    S.B. Gudnason, C. Halcrow, Phys. Rev. D 98, 125010 (2018)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    R.A. Battye, N.S. Manton, P.M. Sutcliffe, Proc. Roy. Soc. Lond. A 463, 261 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    R. Bijker, F. Iachello, Phys. Rev. Lett. 112, 152501 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    C.J. Halcrow, C. King, N.S. Manton, Phys. Rev. C 95, 031303(R) (2017)ADSCrossRefGoogle Scholar
  54. 54.
    C.J. Halcrow, C. King, N.S. Manton, Int. J. Mod. Phys. E 28, 1950026 (2019)ADSCrossRefGoogle Scholar
  55. 55.
    J.I. Rawlinson, Nucl. Phys. A 975, 122 (2018)ADSCrossRefGoogle Scholar
  56. 56.
    A. Heusler, Eur. Phys. J. A 53, 215 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    E. Epelbaum, PoS CD15, 014 (2016)Google Scholar
  58. 58.
    B. Barton-Singer, C. Ross, B.J. Schroers, Commun. Math. Phys. (2020).  https://doi.org/10.1007/s00220-019-03676-1CrossRefGoogle Scholar
  59. 59.
    E. Walton, Some exact Skyrmion solutions on curved thin films. arXiv:1908.08428

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations