Integrability and Nonlinear Waves

  • Mark J. AblowitzEmail author
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 32)


Major developments in the study of nonlinear wave equations were the discovery of the soliton, its connection to the eigenvalue of a linear operator and solutions of the underlying equations by the inverse scattering transform. Inverse scattering transform provides the solution to the initial value problem of a class of nonlinear equations. In this article the background, key ideas and methodology of inverse scattering transform are discussed in connection with some well-known physically important nonlinear equations including the Korteweg–de Vries and nonlinear Schrödinger equations. More recently a new class of nonlocal nonlinear Schrödinger type equations have been found to be integrable; they arise from new symmetries in the associated scattering problem that had not been previously known. The solution of these novel systems is also discussed in this review. Other methods of solution of soliton/integrable equations and comments regarding the future are also included.



MJA was partially supported by NSF under Grant No. DMS-1712793.


  1. 1.
    M.D. Kruskal, in Nonlinear Wave Motion. AMS Lectures in Applied Mathematics, vol. 15, ed. by A.C. Newell (American Mathematical Society, Providence, 1974), p. 61Google Scholar
  2. 2.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Korteweg, G. de Vries, Philos. Mag. 39, 442 (1895)CrossRefGoogle Scholar
  4. 4.
    E. Falcon, C. Laroche, S. Fauve, Phys. Rev. Lett. 89, 204501 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    J. Boussinesq, Mem. Pres. Acad. Sci. Paris Ser. 2(23), 1 (1877)Google Scholar
  6. 6.
    J.S. Russell, in Proceedings of the 14th meeting of the British Association for the Advancement of Science, ed. by J. Murray (London, 1844), p. 311Google Scholar
  7. 7.
    M.J. Ablowitz, Nonlinear Dispersive Waves, Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)zbMATHCrossRefGoogle Scholar
  8. 8.
    R.M. Miura, C.S. Gardner, M.D. Kruskal, J. Math. Phys. 9, 1204 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    R.M. Miura, J. Math. Phys. 9, 1202 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    P.D. Lax, Commun. Pure Appl. Math 21, 467 (1968)CrossRefGoogle Scholar
  12. 12.
    V.E. Zakharov, A.B. Shabat, Sov. Phys., J. Exp. Theor. Phys. 34, 62 (1972)Google Scholar
  13. 13.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math. 53, 249 (1974)CrossRefGoogle Scholar
  14. 14.
    M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform. Studies in Applied Mathematical, vol. 4 (SIAM, Philadelphia, 1981)Google Scholar
  15. 15.
    M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)Google Scholar
  16. 16.
    C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K.G. Makris, R. El Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Z.H. Musslimani, K.G. Makris, R. El Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  20. 20.
    M.J. Ablowitz, Z.H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Ablowitz, Z.H. Musslimani, 29, 915 (2016)Google Scholar
  22. 22.
    M.J. Ablowitz, Z.H. Musslimani, Phys. Rev. E 90, 032912 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A.S. Fokas, Nonlinearity 29, 319 (2016)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M.J. Ablowitz, Z.H. Musslimani, Stud. Appl. Math. 139, 7 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.J. Ablowitz, Z.H. Musslimani, J. Phys. A: Math. Theor. 52, 15LT02 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Yang, Phys. Rev. E 98, 042202 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S.V. Manakov, Sov. Phys. JETP 38, 693 (1974)ADSGoogle Scholar
  28. 28.
    M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)zbMATHGoogle Scholar
  29. 29.
    S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons. The inverse Scattering Method (Plenum, New York, 1984)zbMATHGoogle Scholar
  30. 30.
    F. Calogero, A. Degasperis, Spectral Transform and Solitons I (North Holland, Amsterdam, 1982)zbMATHGoogle Scholar
  31. 31.
    L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987)zbMATHCrossRefGoogle Scholar
  32. 32.
    M.J. Ablowitz, H. Segur, Stud. Appl. Math. 57, 13 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    H. Segur, M.J. Ablowitz, Phys. D 3, 165 (1981)CrossRefGoogle Scholar
  34. 34.
    V.E. Zakharov, S.V. Manakov, J. Exp. Theor. Phys. 44, 106 (1976)ADSGoogle Scholar
  35. 35.
    P. Deift, X. Zhou, Bull. Am. Math. Soc. 26, 119 (1992)CrossRefGoogle Scholar
  36. 36.
    I.M. Krichever, Funct. Anal. Appl. 11, 12 (1977)CrossRefGoogle Scholar
  37. 37.
    E.D. Belekolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, Algebro-geometrical Approach to Nonlinear Integrable Equations (Springer, Berlin, 1994)Google Scholar
  38. 38.
    M.J. Ablowitz, A.S. Fokas, Complex Variables: Introduction and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2003)zbMATHCrossRefGoogle Scholar
  39. 39.
    R. Beals, R.R. Coifman, Commun. Pure Appl. Math. 38, 29 (1985)CrossRefGoogle Scholar
  40. 40.
    G. Fibich, The Nonlinear Schrödinger Equation, Singular Solutions and Collapse (Springer, Heidelberg, 2015)zbMATHCrossRefGoogle Scholar
  41. 41.
    V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 37, 823 (1973)ADSGoogle Scholar
  42. 42.
    M.J. Ablowitz, G. Biondini, B. Prinari, Inverse Prob. 23, 1711 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    B. Prinari, M.J. Ablowitz, G. Biondini, J. Math. Phys. 47, 063508 (2006)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M.J. Ablowitz, X.-D. Luo, Z.H. Musslimani, J. Math. Phys. 59, 0011501 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    V.S. Buslaev, V.N. Fomin, Vestnik Leningrad Univ. 17, 56 (1962)MathSciNetGoogle Scholar
  46. 46.
    A. Cohen, Commun. Part. Differ. Eq. 9, 751 (1984)Google Scholar
  47. 47.
    A. Cohen, T. Kappeler, Indiana U. Math. J. 34, 127 (1985)CrossRefGoogle Scholar
  48. 48.
    T. Aktosun, J. Math. Phys. 40, 5289 (1999)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    I. Egorova, Z. Gladka, T. Luc Lange, G. Teschl, Zh. Mat. Fiz. Anal. Geom. 11, 123 (2015)Google Scholar
  50. 50.
    M.J. Ablowitz, X.-D. Luo, J.T. Cole, J. Math. Phys. 59, 091406 (2018)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)zbMATHCrossRefGoogle Scholar
  52. 52.
    T. Miwa, M. Jimbo, E. Date, Solitons, Differential Equations, Symmetries and Infinite Dimensional Lie Algebras (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  53. 53.
    G. Biondini, Y. Kodama, J. Phys. A: Math. Gen. 36, 10529 (2003)CrossRefGoogle Scholar
  54. 54.
    S. Chakravarty, Y. Kodama, Stud. Appl. Math. 123, 83 (2009)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Y. Kodama, Solitons in Two-Dimensional Shallow Water (SIAM, Philadelphia, 2018)CrossRefGoogle Scholar
  56. 56.
    M.J. Ablowitz, D.E. Baldwin, Phys. Rev. E 86, 036305 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons (Springer, Berlin, 1991)zbMATHCrossRefGoogle Scholar
  58. 58.
    C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge University Press, Cambridge, 2002)zbMATHCrossRefGoogle Scholar
  59. 59.
    F.W. Nijhoff, G.R.W. Quispel, H.W. Capel, Phys. Lett. A 97, 125 (1983)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    V.E. Zakharov, A.B. Shabat, Funct. Anal. Appl. 13, 166 (1979)CrossRefGoogle Scholar
  61. 61.
    V.E. Zakharov, S.V. Manakov, Funct. Anal. Appl. 19, 89 (1985)CrossRefGoogle Scholar
  62. 62.
    R. Camassa, D.D. Holm, Phys. Rev. Lett. 71, 1661 (1993)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    S. Dyachenko, D. Zakharov, V. Zakharov, Phys. D 333, 148 (2016)MathSciNetCrossRefGoogle Scholar
  64. 64.
    D. Zakharov, V. Zakharov, Generalized primitive potentials, arXiv:1907.05038
  65. 65.
    A.S. Fokas, A Unified Approach to Boundary Value Problems (SIAM, Philadelphia, 2007)Google Scholar
  66. 66.
    S.V. Manakov, P.M. Santini, JETP Lett. 83, 462 (2006)CrossRefGoogle Scholar
  67. 67.
    S.V. Manakov, P.M. Santini, Phys. Lett. A. 359, 613 (2006)ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    S.V. Manakov, P.M. Santini, J. Phys. A; Math. Theor. 42, 095203 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability (Cambridge University Press, Cambridge, 2016)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of ColoradoBoulderUSA

Personalised recommendations