Nonlinear Systems for Unconventional Computing

  • Kirill P. Kalinin
  • Natalia G. BerloffEmail author
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 32)


The search for new computational machines beyond the traditional von Neumann architecture has given rise to a modern area of nonlinear science—development of unconventional computing—requiring the efforts of mathematicians, physicists and engineers. Many analogue physical systems including nonlinear oscillator networks, lasers, and condensates were proposed and realised to address hard computational problems from various areas of social and physical sciences and technology. The analogue systems emulate spin Hamiltonians with continuous or discrete degrees of freedom to which actual optimisation problems can be mapped. Understanding of the underlying physical process by which the system finds the ground state often leads to new classes of system-inspired or quantum-inspired algorithms for hard optimisation. Together physical platforms and related algorithms can be combined to form a hybrid architecture that may one day compete with conventional computing. In this chapter, we review some of the systems and physically-inspired algorithms that show such promise.


  1. 1.
    G.E. Moore, IEEE solid state circuits society newsletter 11, 33 (2006). [Reprinted from Electronics 38, 114 (1965)]CrossRefGoogle Scholar
  2. 2.
    M.M. Waldrop, Nat. News 530, 144 (2016)CrossRefGoogle Scholar
  3. 3.
    G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295(5564), 2427 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    R. Babbush, P.J. Love, A. Aspuru-Guzik, Sci. Rep. 4, 6603 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum Computation by Adiabatic Evolution, arXiv:quant-ph/0001106
  7. 7.
    J.J. Hopfield, D.W. Tank, Biol. Cybern. 52, 141 (1985)Google Scholar
  8. 8.
    G. Wilson, G. Pawley, Biol. Cybern. 58, 63 (1988)CrossRefGoogle Scholar
  9. 9.
    S.V. Aiyer, M. Niranjan, F. Fallside, I.E.E.E. Trans, Neural Netw. 1, 204 (1990)CrossRefGoogle Scholar
  10. 10.
    A. Blum, R.L. Rivest, in Advances in Neural Information Processing Systems, ed. by D.S. Touretzky (Morgan Kaufmann, San Francisco, 1989), p. 494Google Scholar
  11. 11.
    A. Lucas, Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Molnár, F. Molnár, M. Varga, Z. Toroczkai, M. Ercsey-Ravasz, Nat. Commun. 9, 4864 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    C.J.C. Burges, Microsoft Research Technical Report MSR-TR-2002-83 (2002)Google Scholar
  14. 14.
    M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, E. Aurell, Phys. Rev. E 87, 012707 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sipser, in Stoc’92 – Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing. Victoria, May 1992 (ACM, New York, 1992), p. 603Google Scholar
  16. 16.
    F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    G. de las Cuevas, T.S. Cubitt, Science 351, 1180 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    R.M. Karp, in Complexity of Computer Computations, ed. by R. Miller (Springer, New York, 1972), p. 85Google Scholar
  19. 19.
    U. Benlic, J.K. Hao, Eng. Appl. Artif. Intel. 26, 1162 (2013)CrossRefGoogle Scholar
  20. 20.
    K.P. Kalinin, N.G. Berloff, Sci. Repos. 8, 17791 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    T. Leleu, Y. Yamamoto, P.L. McMahon, K. Aihara, Phys. Rev. Lett. 122, 040607 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    R.W. Harrison, J. Opt. Soc. Amer. A 10, 1046 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D.K. Satapathy, J.F. van der Veen, Acta Crystallogr. A 63, 306 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    J. Miao, T. Ishikawa, Q. Shen, T. Earnest, Annu. Rev. Phys. Chem. 59, 387 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    I. Waldspurger, A. d’Aspremont, S. Mallat, Math. Program. 149, 47 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Hamze, J. Raymond, C.A. Pattison, K. Biswas, H.G. Katzgraber, The Wishart planted ensemble: a tunably-rugged pairwise Ising model with a first-order phase transition, arXiv:1906.00275
  27. 27.
    M.X. Goemans, D.P. Williamson, J. Comput. Syst. Sci. 68, 442 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Zhang, Y. Huang, SIAM J. Optimiz. 16, 871 (2006)CrossRefGoogle Scholar
  29. 29.
    N. Krislock, J. Malick, F. Roupin, A.C.M.T. Math, Software 43, 32 (2017)Google Scholar
  30. 30.
    D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. Atom. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.S. Lühmann, B.A. Malomed, T. Sowiński, J. Zakrzewski, Rep. Prog. Phys. 78, 066001 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    E.P. Gross, Il Nuovo Cimento 20, 454 (1961)ADSCrossRefGoogle Scholar
  36. 36.
    L. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)Google Scholar
  37. 37.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)zbMATHCrossRefGoogle Scholar
  38. 38.
    J.C. Eilbeck, P. Lomdahl, A.C. Scott, Phys. D 16, 318 (1985)MathSciNetCrossRefGoogle Scholar
  39. 39.
    G.L. Alfimov, P.G. Kevrekidis, V.V. Konotop, M. Salerno, Phys. Rev. E 66, 046608 (2002)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    R. Mishmash, L. Carr, Math. Comput. Simul. 80, 732 (2009)CrossRefGoogle Scholar
  42. 42.
    J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Science 333, 996 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein et al., Nat. Phys. 9, 738 (2013)CrossRefGoogle Scholar
  44. 44.
    M.W. Johnson, M.H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk et al., Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    D.S. Steiger, B. Heim, T.F. Rønnow, M. Troyer, Proc. SPIE 9468, 964816 (2015)Google Scholar
  47. 47.
    V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven, Phys. Rev. X 6, 031015 (2016)Google Scholar
  48. 48.
    I. Zintchenko, M.B. Hastings, M. Troyer, Phys. Rev. B 91, 024201 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    H. Cao, R. Chriki, S. Bittner, A.A. Friesem, N. Davidson, Nat. Rev. Phys. 1, 156 (2019)CrossRefGoogle Scholar
  50. 50.
    D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer, Nat. Commun. 4, 1364 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    L. Bao, N.H. Kim, L.J. Mawst, N.N. Elkin, V.N. Troshchieva, D.V. Vysotsky, A.P. Napartovich, Appl. Phys. Lett. 84, 320 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    V. Eckhouse, M. Fridman, N. Davidson, A.A. Friesem, Phys. Rev. Lett. 100, 024102 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    M. Nixon, M. Friedman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Phys. Rev. Lett. 106, 223901 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    F. Rogister, K.S. Thornburg Jr., L. Fabiny, M. Möller, R. Roy, Phys. Rev. Lett. 92, 093905 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    V. Pal, C. Tradonsky, R. Chriki, A.A. Friesem, N. Davidson, Phys. Rev. Lett. 119, 013902 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)zbMATHCrossRefGoogle Scholar
  57. 57.
    Y. Kuramoto, Lect. Notes Phys. 30, 420 (1975)ADSCrossRefGoogle Scholar
  58. 58.
    H.K. Khalil, Nonlinear Systems (Prentice-Hall, Upper Saddle River, 2002)Google Scholar
  59. 59.
    C. Tradonsky, O. Raz, V. Pal, R. Chriki, A.A. Friesem, N. Davidson, Sci. Adv. 5, eaax4530 (2019)ADSCrossRefGoogle Scholar
  60. 60.
    P.L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara et al., Science 354, 614 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    R. Hamerly, T. Inagaki, P.L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo, et al., Sci. Adv. 5, eaau0823 (2019)ADSCrossRefGoogle Scholar
  62. 62.
    F. Böhm, T. Inagaki, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, H. Takesue, Nat. Commun. 9, 5020 (2018)Google Scholar
  63. 63.
    Y. Haribara, H. Ishikawa, S. Utsunomiya, K. Aihara, Y. Yamamoto, Quantum Sci. Technol. 2, 044002 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    A.D. King, W. Bernoudy, J. King, A.J. Berkley, T. Lanting, Emulating the coherent Ising machine with a mean-field algorithm, arXiv:1806.08422
  65. 65.
    K. Takata, A. Marandi, Y. Yamamoto, Phys. Rev. A 92, 043821 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    F. Böhm, G. Verschaffelt, G. van der Sande, Nat. Commun. 10, 1 (2019)CrossRefGoogle Scholar
  67. 67.
    M. Babaeian, D.T. Nguyen, V. Demir, M. Akbulut, P.A. Blanche, Y. Kaneda, S. Guha, M.A. Neifeld, N. Peyghambarian, Nat. Commun. 10, 1 (2019)CrossRefGoogle Scholar
  68. 68.
    K.P. Kalinin, N.G. Berloff, New J. Phys. 20, 113023 (2018)ADSCrossRefGoogle Scholar
  69. 69.
    D. Pierangeli, G. Marcucci, C. Conti, Phys. Rev. Lett. 122, 213902 (2019)ADSCrossRefGoogle Scholar
  70. 70.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska, R. André, J. Staehli et al., Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    N. Berloff, J. Keeling, in Physics of Quantum Fluids, ed. by A. Bramati, M. Modugno (Springer, Berlin, 2013), p. 19Google Scholar
  72. 72.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)ADSCrossRefGoogle Scholar
  73. 73.
    J. Klaers, F. Vewinger, M. Weitz, Nat. Phys. 6, 512 (2010)CrossRefGoogle Scholar
  74. 74.
    J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Appl. Phys. B 105, 17 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    J. Schmitt, T. Damm, F. Vewinger, M. Weitz, J. Klaers, New J. Phys. 14, 075019 (2012)ADSCrossRefGoogle Scholar
  76. 76.
    H. Walther, B.T. Varcoe, B.G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart et al., Nat. Phys. 6, 860 (2010)CrossRefGoogle Scholar
  78. 78.
    F. Manni, K.G. Lagoudakis, T.C.H. Liew, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 107, 106401 (2011)ADSCrossRefGoogle Scholar
  79. 79.
    G. Tosi, G. Christmann, N. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. Savvidis, J. Baumberg, Nat. Phys. 8, 190 (2012)CrossRefGoogle Scholar
  80. 80.
    G. Tosi, G. Christmann, N. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. Savvidis, J. Baumberg, Nat. Commun. 3, 1243 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    N.G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos, J.D. Töpfer, P. Cilibrizzi, W. Langbein, P.G. Lagoudakis, Nat. Mat. 16, 1120 (2017)CrossRefGoogle Scholar
  82. 82.
    C. Schneider, K. Winkler, M. Fraser, M. Kamp, Y. Yamamoto, E. Ostrovskaya, S. Höfling, Rep. Prog. Phys. 80, 016503 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    A. Amo, J. Bloch, C.R. Phys. 17, 934 (2016)Google Scholar
  84. 84.
    D. Dung, C. Kurtscheid, T. Damm, J. Schmitt, F. Vewinger, M. Weitz, J. Klaers, Nat. Photonics 11, 565 (2017)CrossRefGoogle Scholar
  85. 85.
    K.P. Kalinin, N.G. Berloff, Phys. Rev. B 100, 245306 (2019)ADSCrossRefGoogle Scholar
  86. 86.
    K.P. Kalinin, N.G. Berloff, Phys. Rev. Lett. 121, 235302 (2018)ADSCrossRefGoogle Scholar
  87. 87.
    N. Stroev, N.G. Berloff, Discrete polynomial optimization with coherent networks of condensates and complex coupling switching, arXiv:1910.00842
  88. 88.
    R. Lang, K. Kobayashi, IEEE J. Quantum Elect. 16, 347 (1980)ADSCrossRefGoogle Scholar
  89. 89.
    J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  90. 90.
    F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Book, Washington D.C., 1962)Google Scholar
  91. 91.
    D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533 (1986)ADSCrossRefGoogle Scholar
  92. 92.
    O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., Int. J. Comput. Vision 115, 211 (2015)MathSciNetCrossRefGoogle Scholar
  93. 93.
    H.T. Siegelmann, E.D. Sontag, Appl. Math. Lett. 4, 77 (1991)MathSciNetCrossRefGoogle Scholar
  94. 94.
    S. Hochreiter, J. Schmidhuber, Neural Comput. 9, 1735 (1997)CrossRefGoogle Scholar
  95. 95.
    M. Schuster, K.K. Paliwal, IEEE T. Signal Proces. 45, 2673 (1997)ADSCrossRefGoogle Scholar
  96. 96.
    H. Zhang, Z. Wang, D. Liu, I.E.E.E.T. Neural Netw. Lear. 25, 1229 (2014)Google Scholar
  97. 97.
    Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks for sequence learning, arXiv:1506.00019
  98. 98.
    P.J. Werbos, Proc. IEEE 78, 1550 (1990)CrossRefGoogle Scholar
  99. 99.
    A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, IEEE T. Pattern Anal. 31, 855 (2008)CrossRefGoogle Scholar
  100. 100.
    A. Graves, Generating sequences with recurrent neural networks, arXiv:1308.0850
  101. 101.
    I. Sutskever, J. Martens, G.E. Hinton, in ICML’11 – Proceedings of the 28th International Conference on Machine Learning, ed. by L. Getoor, T. Scheffer. Bellevue, Washington, June 28—July 2, 2011 (Omnipress, Madison, 2011), p. 1017–1024Google Scholar
  102. 102.
    N. Kalchbrenner, P. Blunsom, in EMNLP’13 – Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, ed. by D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, S. Bethard. Seattle, October 2013 (Association for Computational Linguistics, Stroudsburg, 2013), p. 1700Google Scholar
  103. 103.
    I. Sutskever, O. Vinyals, Q.V. Le, in Advances in Neural Information Processing Systems 27, ed. by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger. Conference on Neural Information Processing Systems 2014, Montreal, December 2014 (Curran Associates, New York, 2014), p. 3104Google Scholar
  104. 104.
    T.W. Hughes, I.A. Williamson, M. Minkov, S. Fan, Sci. Adv. 5, eaay6946 (2019)ADSCrossRefGoogle Scholar
  105. 105.
    H. Jaeger, GMD Report 148, German National Research Center for Information Technology (2001)Google Scholar
  106. 106.
    W. Maass, T. Natschläger, H. Markram, Neural Comput. 14, 2531 (2002)CrossRefGoogle Scholar
  107. 107.
    M.C. Soriano, S. Ortín, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, G. Van der Sande, I.E.E.E.T. Neural Netw. Lear. 26, 388 (2014)Google Scholar
  108. 108.
    P. Antonik, Application of FPGA to Real-Time Machine Learning: Hardware Reservoir Computers and Software Image Processing (Springer, Cham, 2018)CrossRefGoogle Scholar
  109. 109.
    A. Polepalli, N. Soures, D. Kudithipudi, in 2016 IEEE International Conference on Rebooting Computing (ICRC). San Diego, October 2016 (IEEE, 2016)
  110. 110.
    A. Katumba, J. Heyvaert, B. Schneider, S. Uvin, J. Dambre, P. Bienstman, Sci. Rep. 8, 2653 (2018)ADSCrossRefGoogle Scholar
  111. 111.
    L. Larger, A. Baylón-Fuentes, R. Martinenghi, V.S. Udaltsov, Y.K. Chembo, M. Jacquot, Phys. Rev. X 7, 011015 (2017)Google Scholar
  112. 112.
    J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima et al., Nature 547, 428 (2017)CrossRefGoogle Scholar
  113. 113.
    R. Nakane, G. Tanaka, A. Hirose, IEEE Access 6, 4462 (2018)CrossRefGoogle Scholar
  114. 114.
    D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova, K. Everschor-Sitte, Phys. Rev. Appl. 9, 014034 (2018)ADSCrossRefGoogle Scholar
  115. 115.
    G. Urbain, J. Degrave, B. Carette, J. Dambre, F. Wyffels, Front. Neurorobotics 11, 16 (2017)CrossRefGoogle Scholar
  116. 116.
    P. Vincent-Lamarre, G. Lajoie, J.P. Thivierge, J. Comput. Neurosci. 41, 305 (2016)MathSciNetCrossRefGoogle Scholar
  117. 117.
    G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A. Hirose, Neural Netw. 115, 100 (2019)CrossRefGoogle Scholar
  118. 118.
    A. Opala, S. Ghosh, T.C. Liew, M. Matuszewski, Phys. Rev. Appl. 11, 064029 (2019)ADSCrossRefGoogle Scholar
  119. 119.
    T. Leleu, Y. Yamamoto, S. Utsunomiya, K. Aihara, Phys. Rev. E 95, 022118 (2017)ADSMathSciNetCrossRefGoogle Scholar
  120. 120.
    H. Goto, K. Tatsumura, A.R. Dixon, Sci. Adv. 5, eaav2372 (2019)ADSzbMATHCrossRefGoogle Scholar
  121. 121.
    R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund, Phys. Rev. X 9, 021032 (2019)Google Scholar
  122. 122.
    M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Carolan, R. Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić, et al., A recurrent Ising machine in a photonic integrated circuit, arXiv:1909.13877
  123. 123.
    J. Preskill, Quantum computing and the entanglement frontier. Rapporteur talk at the 25th Solvay Conference on Physics, Brussels, October 2011. arXiv:1203.5813
  124. 124.
    F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell et al., Nature 574, 505 (2019)ADSCrossRefGoogle Scholar
  125. 125.
    E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, R. Wisnieff, Leveraging secondary storage to simulate deep 54-qubit sycamore circuits, arXiv:1910.09534
  126. 126.
    H. Wang, J. Qin, X. Ding, M.C. Chen, S. Chen, X. You, Y.M. He, X. Jiang, Z. Wang, L. You, Z. Wang, C. Schneider, J.J. Renema, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 123, 250503 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUnited Kingdom
  2. 2.Skolkovo Institute of Science and Technology Russian FederationMoscowRussia

Personalised recommendations