Genome Studies for Effective Management and Utilization of Coconut Genetic Resources

  • Luc BaudouinEmail author


Coconut belongs to a typically South American subtribe (Attalinae), yet at the dawn of agriculture, it was in both the Indian and Pacific Oceans. How it reached this pre-historic distribution remains unclear. During the last 20 years, molecular markers have been developed to study coconut genetic diversity, assess gene flows and identify markers of agronomic traits. They have proven useful to identify coconut cultivars and to track genetic exchange between populations and human migrations. Two well-differentiated gene pools, originating from the Indian and the Pacific Oceans, were identified. Self-pollinating Dwarf coconuts resulted from a single domestication event in Southeast Asia. Markers for various agronomic traits were identified through linkage mapping and association studies. More recently, genome expression was studied in various organs, providing a representation of the coconut proteome and of its regulation, allowing to identify key genes involved in the metabolism of the endosperm and in somatic embryogenesis. Several research teams undertook its sequencing, and two draft sequences have been published. This large genome was recently assembled into 16 pseudomolecules by anchoring it on a linkage map. The biology of the coconut makes genetic improvement difficult. Genomic selection and marker-assisted selection can speed up the first stages of varietal development based on advanced generations of crosses between genetically distant populations. This will require profound changes in the methods used in field observation, aiming to acquire more phenotypic data at the individual level as well as the open availability of genomic resources.


Genome studies Coconut breeding Population hybrids Microsatellite markers Linkage mapping QTL Phytoplasma diseases MicroRNAs Cytoplasmic genome 


  1. Aljohi HA, Liu W, Lin Q et al (2016) Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS One 11(10):e0163990PubMedPubMedCentralGoogle Scholar
  2. Alsaihati B, Liu W, Lin Q (2014) Coconut genome de novo sequencing. In: Plant and animal genome XXII conference: plant and animal genomeGoogle Scholar
  3. Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedPubMedCentralGoogle Scholar
  4. Anderson EC, Thompson EA (2001) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229Google Scholar
  5. Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66(5):790Google Scholar
  6. Armero A, Baudouin L, Bocs S et al (2017) Improving transcriptome de novo assembly by using a reference genome of a related species: translational genomics from oil palm to coconut. PLoS One 12(3):e0173300PubMedPubMedCentralGoogle Scholar
  7. Arunachalam V (2012) Genomics of cultivated palms. Elsevier, AmsterdamGoogle Scholar
  8. Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37(5–6):992–997Google Scholar
  9. Baker WJ, Couvreur TL (2013) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. J Biogeogr 40(2):286–298Google Scholar
  10. Bandupriya HDD, Dunwell JM (2016) Transcriptome analysis for discovering candidate genes involve in embryogenesis in coconut (Cocos nucifera L.) through 454 pyrosequencing. J Natl Sci Found Sri Lanka 43(4):319–336Google Scholar
  11. Bandupriya HDD, Gibbings JG, Dunwell JM (2014) Overexpression of coconut AINTEGUMENTA-like gene, CnANT, promotes in vitro regeneration in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 116(1):67–79Google Scholar
  12. Batugal P (2005) Coconut genetic resources. Bioversity International, RomeGoogle Scholar
  13. Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Breeding plantation tree crops: tropical species. Springer, New York, pp 327–373Google Scholar
  14. Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software for use with coconuts. Burotrop Bull 17:16–20Google Scholar
  15. Baudouin L, Lebrun P (2009) Coconut (Cocos nucifera L.) DNA studies support the hypothesis of an ancient Austronesian migration from Southeast Asia to America. Genet Resour Crop Evol 56(2):257–262Google Scholar
  16. Baudouin L, Piry S, Cornuet JM (2004) Analytical Bayesian approach for assigning individuals to populations. J Hered 95(3):217–224PubMedGoogle Scholar
  17. Baudouin L, Lebrun P, Konan JL (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112(2):258–268PubMedGoogle Scholar
  18. Baudouin L, Lebrun P, Berger A et al (2008) The Panama Tall and the Maypan hybrid coconut in Jamaica: did genetic contamination cause a loss of resistance to Lethal Yellowing? Euphytica 161(3):353–360Google Scholar
  19. Baudouin L, Philippe R, Quaicoe RN et al (2009) General overview of genetic research and experimentation on coconut varieties tolerant/resistant to lethal yellowing. OCL Ol Corps Gras Lipides 16(2):127–131Google Scholar
  20. Baudouin L, Gunn BF, Olsen KM (2014) The presence of coconut in southern Panama in pre-Columbian times: clearing up the confusion. Ann Bot 113(1):1–5PubMedGoogle Scholar
  21. Bioinformation and DDBJ Center (n.d.). Available from Accessed 1 July 2019
  22. Bourdeix R, N’Cho YP, Sangaré A et al (1992) L’hybride de cocotier PB 121 amélioré, croisement du Nain Jaune Malais et de géniteurs Grand Ouest-Africain sélectionnés. Oléagineux 47(11):619–633Google Scholar
  23. Cardena R, Oropeza C, Zizumbo Villarreal D (1998) Leaf proteins as markers useful in the genetic improvement of coconut palms. Euphytica 102:81–86Google Scholar
  24. Cardeña R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci Hortic 98(3):257–263Google Scholar
  25. CGRD Version 6.1 (2012). Available from Accessed 12 Oct 2017
  26. De Nucé De Lamothe M, Rognon F (1973) La production de semences hybrides chez le cocotier. Exploitation des champs semenciers. Oléagineux 28(6):287–291Google Scholar
  27. Devakumar K, Niral V, Jerard BA (2010) Microsatellite analysis of distinct coconut accessions from Agatti and Kavaratti Islands, Lakshadweep, India. Sci Hortic 125(3):309–315Google Scholar
  28. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096PubMedGoogle Scholar
  29. Duran Y, Rohde W, Kullaya A et al (1997) Molecular analysis of East African Tall coconut genotypes by DNA marker technology. J Genet Breed 51:279–288Google Scholar
  30. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  31. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578PubMedPubMedCentralGoogle Scholar
  32. Fan H, Xiao Y, Yang Y et al (2013) RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches. PLoS One 8(3):e59997PubMedPubMedCentralGoogle Scholar
  33. Freitas Neto M, Pereira TNS, Geronimo IGC et al (2016) Coconut genome size determined by flow cytometry: tall versus dwarf types. Genet Mol Res 15(1).
  34. Galvez HF, Lantican DV, Sison MLJ (2018) Coconut genetics and genomics for host insect resistance. In PAG – plant and animal genome XXVI conference, San DiegoGoogle Scholar
  35. Gao L, Sun R, Liang Y (2014) Cloning and functional expression of a cDNA encoding stearoyl-ACP Δ9-desaturase from the endosperm of coconut (Cocos nucifera L.). Gene 549(1):70–76PubMedGoogle Scholar
  36. Gaut BS, Morton BR, McCaig BC et al (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci 93(19):10274–10279PubMedGoogle Scholar
  37. Geethanjali S, Rukmani A, Rajakumar D et al (2017) Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour 16(2):156–168Google Scholar
  38. Gomez-Navarro C, Jaramillo C, Herrera F et al (2009) Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. Am J Bot 96(7):1300–1312PubMedGoogle Scholar
  39. Gunn BF (2004) The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Mo Bot Gard 91(3):505–522Google Scholar
  40. Gunn BF, Baudouin L, Olsen KM (2011) Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. Plos One 6(6):e21143PubMedPubMedCentralGoogle Scholar
  41. Hahn WJ (2002) A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data. Mol Phylogenet Evol 23(2):189–204PubMedGoogle Scholar
  42. Hamelin C, Sempere G, Jouffe V (2013) TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Res 41(D1):D1172–D1175PubMedGoogle Scholar
  43. Harries HC (1977) The Cape Verde region (1499 to 1549); the key to coconut in the Western hemisphere? Turrialba 27(3):227–231Google Scholar
  44. Harries HC, Clement CR (2014) Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem. Ann Bot 113(4):565–570PubMedPubMedCentralGoogle Scholar
  45. Herran A, Estioko L, Becke D et al (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101(1):292–300Google Scholar
  46. Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS One 8(8):e74736PubMedPubMedCentralGoogle Scholar
  47. Huang YY, Lee CP, Fu JL et al (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3-Genes Genom Genet 4(11):2147–2157Google Scholar
  48. Hubisz MJ, Falush D, Stephens M et al (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332PubMedPubMedCentralGoogle Scholar
  49. IPGRI (1995) Descriptors for coconut (Cocos nucifera). International Plant Genetic Resources Institute, RomeGoogle Scholar
  50. Jay P, Bourdeix R, Potier F (1991) Polymorphism of coconut leaf polyphenols. In: Coconut breeding and management. Kerala Agricultural University, Vellanikkara, pp 60–68Google Scholar
  51. Kamaral LCJ, Dassanayaka PN, Perera KLNS et al (2016) SSR markers reveal the population structure of Sri Lankan yellow dwarf coconuts (Cocos nucifera L.). Tree Genet Genomes 12(6):116Google Scholar
  52. KEGG: Kyoto Encyclopedia of Genes and Genomes (n.d.). Available from Accessed 4 July 2019
  53. Konan KJN, Koffi KE, Konan JL et al (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistant to lethal yellowing disease. Afr J Biotechnol 6(4):341–347Google Scholar
  54. Konan KJN, Koffi KE, Konan K (2011) Microsatellite gene diversity within Philippines dwarf coconut palm (Cocos nucifera L.) resources at Port-Bouët, Côte d’Ivoire. Sci Res Essays 6(28):5986–5992Google Scholar
  55. Lantican DV, Susan RS, Alma OC et al (2018) The coconut genome: providing a reference sequence towards coconut varietal improvement. In PAG – plant and animal genome XXVI conference, San DiegoGoogle Scholar
  56. Lantican DV, Strickler SR, Canama AO et al (2019) De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. ‘Catigan Green Dwarf’) provides insights into genomic variation between coconut types and related palm species. G3-Genes Genome Genet.
  57. Lebrun P, N’Cho YP, Seguin M (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108Google Scholar
  58. Lebrun P, Baudouin L, Grivet L et al (1999) Genetic diversity of coconut trees. RFLP study of the large collection of the M. Delorme station in Côte d’IvoireGoogle Scholar
  59. Lebrun P, Baudouin L, Bourdeix R et al (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970PubMedPubMedCentralGoogle Scholar
  60. Lebrun P, Baudouin L, Myrie W et al (2007) Recent lethal yellowing outbreak: why is the Malayan Yellow Dwarf Coconut no longer resistant in Jamaica? Tree Genet Genomes 4(1):125–131Google Scholar
  61. Liang Y, Yuan Y, Liu T et al (2014) Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC Plant Biol 14:205PubMedPubMedCentralGoogle Scholar
  62. Liu X, Tang H, Li D et al (2011) Genetic diversity of coconut cultivars in China by microsatellite (SSR) markers. Mol Plant Breed 2.
  63. Manimekalai R, Nagarajan P (2006) Assessing genetic relationships among coconut (Cocos nucifera L.) accessions using inter simple sequence repeat markers. Sci Hortic 108(1):49–54Google Scholar
  64. Martin G, Baurens FC, Droc G (2016) Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17:243PubMedPubMedCentralGoogle Scholar
  65. Martinez RT, Baudouin L, Berger A et al (2010) Characterization of the genetic diversity of the Tall coconut (Cocos nucifera L.) in the Dominican Republic using microsatellite (SSR) markers. Tree Genet Genomes 6(1):73–81Google Scholar
  66. Masumbuko LI, Sinje S, Kullaya A (2014) Genetic diversity and structure of East African Tall Coconuts in Tanzania using RAPD markers. Open J Genet 4(02):175–181Google Scholar
  67. Maurice EO, Najya M, Kimani NC et al (2016) Assessment of the genetic diversity of Kenyan coconut germplasm using simple sequence repeat (SSR) markers. Afr J Biotechnol 15(40):2215–2223Google Scholar
  68. Mauro-Herrera M, Meerow AW, Perera L et al (2010) Ambiguous genetic relationships among coconut (Cocos nucifera L.) cultivars: the effects of outcrossing, sample source and size, and method of analysis. Genet Resour Crop Evol 57(2):203–217Google Scholar
  69. Meerow AW, Wisser RJ, Brown JS et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106:715–726Google Scholar
  70. Meerow AW, Noblick L, Borrone JW et al (2009) Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) identifies Syagrus as sister group of the coconut. PLoS One 4(10):e7353PubMedPubMedCentralGoogle Scholar
  71. Meerow AW, Noblick L, Salas-Leiva DE et al (2014) Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics 31(5):509–534Google Scholar
  72. N’Cho YP, Sangaré A, Bourdeix R et al (1993) Evaluation de quelques écotypes de cocotier par une approche biométrique. 1. Etude des populations de Grands. Oléagineux 48(3):121–132Google Scholar
  73. National Center for Biotechnology Information (n.d.). Available from Accessed 1 July 2019
  74. Nayar NM (2017) The coconut, phylogeny, origin, and spread. Academic, LondonGoogle Scholar
  75. Nejat N, Cahill DM, Vadamalai G et al (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Gen Genomics 290(5):1899–1910Google Scholar
  76. Noblick LR, Hahn WJ, Griffith MP (2013) Structural cladistic study of Cocoseae, subtribe Attaleinae (Arecaceae): evaluating taxonomic limits in Attaleinae and the neotropical genus Syagrus. Brittonia 65(2):232–261Google Scholar
  77. Ohler J (1999) Coconut management. Intermediate Technology Publications Ltd. (FAO), LondonGoogle Scholar
  78. Ooijen J (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res Camb 93:343–349Google Scholar
  79. PalmComparomics (2017). Available from Accessed 12 Oct 2017
  80. Parthasarathy V, Geethalakshmi P, Niral V (2004) Analysis of coconut cultivars and hybrids using isozyme polymorphism. Acta Bot Croat 63(1):69–74Google Scholar
  81. Patiño VM (1963) Plantas cultivadas y animales domésticos en América equinoccial. Tomo I: frutales. Imprenta Departamental, CaliGoogle Scholar
  82. Perera L, Russel JR, Provan J et al (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550PubMedGoogle Scholar
  83. Perera L, Russell JR, Provan J et al (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8(2):335–346Google Scholar
  84. Perera L, Russell JR, Provan J et al (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43(1):15–21PubMedGoogle Scholar
  85. Perera L, Russell JR, Provan J et al (2001) Levels and distribution of genetic diversity of coconut (Cocos nucifera L., var. Typica form typica) from Sri Lanka assessed by microsatellite markers. Euphytica 122(2):381–389Google Scholar
  86. Perera L, Russell JR, Provan J et al (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132(1):121–128Google Scholar
  87. Perera L, Baudouin L, Bourdeix R (2011) Coconut palms on the edge of the desert: genetic diversity of Cocos nucifera in Oman. CORD 27(1):9–19Google Scholar
  88. Perera L, Baudouin L, Mackay I (2016) SSR markers indicate a common origin of self-pollinating dwarf coconut in South-East Asia under domestication. Sci Hortic 211:255–262Google Scholar
  89. Perera L, Manimekalai R, Sudarsono S et al (2017) Biotechnology of plantation crops: coconut, pp 219–239Google Scholar
  90. Pérez-Núñez MT, Souza R, Sáenz L et al (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28(1):11–19PubMedGoogle Scholar
  91. Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95(6):536–539PubMedGoogle Scholar
  92. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  93. Puch-Hau C, Oropeza-Salín C, Peraza-Echeverría S et al (2015) Molecular cloning and characterization of disease-resistance gene candidates of the nucleotide binding site (NBS) type from Cocos nucifera L. Physiol Mol Plant Pathol 89:87–96Google Scholar
  94. Puch-Hau C, Oropeza C, Góngora-Paredes M (2016) New insights into the evolutionary history of resistance gene candidates in coconut palms and their expression profiles in palms affected by lethal yellowing disease. Genes Genomics 38(9):793–807Google Scholar
  95. Rajesh MK, Arunachalam V, Nagarajan P et al (2008a) Genetic survey of 10 Indian coconut landraces by simple sequence repeats (SSRs). Sci Hortic 118(4):282–287Google Scholar
  96. Rajesh MK, Nagarajan P, Jerard BA et al (2008b) Microsatellite variability of coconut accessions (Cocos nucifera L.) from Andaman and Nicobar Islands. Curr Sci 94(12):1627–1631Google Scholar
  97. Rajesh MK, Jerard BA, Preethi P et al (2013) Development of a RAPD-derived SCAR marker associated with tall-type palm trait in coconut. Sci Hortic 150:312–316Google Scholar
  98. Rajesh MK, Samsudeen K, Jerard BA et al (2014) Assessment of genetic diversity and phylogenetic relationships among coconut populations from Amini and Kadmat Islands, Lakshadweep (India). Emir J Food Agric 26(10):898–906Google Scholar
  99. Rajesh MK, Rachana KE, Naganeeswaran SA et al (2015) Identification of expressed resistance gene analog sequences in coconut leaf transcriptome and their evolutionary analysis. Turk J Agric For 39:489–502Google Scholar
  100. Ribeiro FE, Baudouin L, Lebrun P et al (2010) Population structures of Brazilian tall coconut (Cocos nucifera L.) by microsatellite markers. Genet Mol Biol 33(4):696–702PubMedPubMedCentralGoogle Scholar
  101. Ribeiro FE, Baudouin L, Lebrun P et al (2013) Genetic diversity in Brazilian tall coconut populations by microsatellite markers. Crop Breed Appl Biotechnol 13(4):356–362Google Scholar
  102. Riedel M, Riederer M, Becker D et al (2009) Cuticular wax composition in Cocos nucifera L.: physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5(1):53–69Google Scholar
  103. Rivera R, Edwards KJ, Barker JHA (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42(4):668–675PubMedGoogle Scholar
  104. Rohde W, Kullaya A, Rodriguez J (1995) Genome analysis of Cocos nucifera L. by PCR amplification of spacer sequences separating a subset of copia-lide EcoRI repetitive elements. J Genet Breed 49(2):179–186Google Scholar
  105. Saensuk C, Wanchana S, Choowongkomon K et al (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334PubMedGoogle Scholar
  106. Santos GA, Batugal PA, Othman A (1996) Manual on standardized research techniques in coconut breeding. IPGRI, RomeGoogle Scholar
  107. Shalini KV, Manjunatha S, Lebrun P (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50(1):35–42PubMedGoogle Scholar
  108. Singh R, Ong-Abdullah M, Low ETL et al (2013) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339PubMedPubMedCentralGoogle Scholar
  109. Srivastava R, Srivastava G (2014) Fossil fruit of Cocos L. (Arecaceae) from Maastrichtian-Danian sediments of central India and its phytogeographical significance. Acta Palaeobot 54(1):67–75Google Scholar
  110. Teulat B, Aldam C, Trehin R (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771Google Scholar
  111. The European Bioinformatics Institute < EMBL-EBI (n.d.). Available from Accessed 1 July 2019
  112. Tripathi RP, Mishra SN, Sharma MP (1999) Cocos nucifera like petrified fruit from the Tertiary of Amarkantak, M.P, India. Palaeobotanist 48(3):251–255Google Scholar
  113. Tropgene (2013). Available from Accessed 19 May 2017
  114. Upadhyay A, Jayadev K, Manimekalai R et al (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99(3–4):353–362Google Scholar
  115. Viveka AT, Moossab F (2016) Identification of novel micro RNAs and their targets in Cocos nucifera–a bioinformatics approach. Biosci Biotechnol Res Commun 9(3):481–488Google Scholar
  116. Wilson MA, Gaut B, Clegg MT (1990) Chloroplast DNA evolves slowly in the palm family (Arecaceae). Mol Biol Evol 7(4):303–314PubMedGoogle Scholar
  117. Xiao Y, Xu P, Fan H et al (2017) The genome draft of coconut (Cocos nucifera). GigaScience 6(11):gix095Google Scholar
  118. Yong X, Yi L, Yaodong Y et al (2013) Development of microsatellite in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Plant OMICS J 6(3):193–200Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CIRAD, UMR AGAPF-34398 MontpellierFrance
  2. 2.AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupagroMontpellierFrance

Personalised recommendations