Advertisement

Collecting Coconut Germplasm for Disease Resistance and Other Traits

  • Roland BourdeixEmail author
  • Gilles Coppens d’Eeckenbrugge
  • Jean Louis Konan
  • Hengky Novarianto
  • Chandrika Perera
  • Valentin Luis Fredrik Wolf
Chapter
  • 32 Downloads

Abstract

After a short presentation of the technical and legal challenges linked to coconut (Cocos nucifera L.) germplasm collecting, this chapter discusses how emerging ethnological and historical approaches have influenced these collecting activities. Then it discloses (i) the various collecting strategies with emphasis on the collection of germplasm showing tolerance to pests and diseases, (ii) varieties with special traits such as the Compact Dwarfs, and (iii) the contribution of geographical and molecular approaches to germplasm identification. In connection with the launching of the recent strategy of the International Coconut Genetic Resources Network (COGENT), an attempt is made to estimate what germplasm will need to be collected in the next decade and the expected outcomes in terms of the number of varieties and populations conserved ex situ. It is suggested that global coordination is needed to limit duplication in the COGENT’s ex situ germplasm collections. Also, special attention needs to be paid to strengthen the involvement of farmers and other stakeholders in the collecting activities.

Keywords

Germplasm collection Genetic variation Historical approaches Phytoplasmas Beetles Red palm weevil 

References

  1. Aratchige NS, Kumara ADNT, Suwandharathne NI (2016) The coconut mite: current global scenario. In: Economic and ecological significance of arthropods in diversified ecosystems. Springer, Singapore, pp 321–342Google Scholar
  2. Batugal P, Ramanatha Rao V, Oliver J (eds) (2005) Coconut genetic resources. International Plant Genetic Resources Institute – Regional Office for Asia, the Pacific and Oceania (IPGRI-APO), SerdangGoogle Scholar
  3. Beccari O (1916) Il genere Cocos Linn e le palme affini. Istituto agricolo coloniale italiano. Istituto Agricolo Coloniale Italiano, Firenze, p 143Google Scholar
  4. Bourdeix R (1997a) Mission report. Coconut germplasm in Tanzania, Sri Lanka and India, October and November 1996. Paris, CIRAD-CP, p 48Google Scholar
  5. Bourdeix R (1997b) Mission report. Training operations in Africa and Latin America/Caribbean. Training courses for instructors on the use of the STANTECH manual (standardized research techniques for coconut breeding). Ivory Coast, Grand-Bassam, 16th–26th June 1997; Jamaica, Kingston, 14th–25th July 1997 Paris: CIRAD-CP, p 60Google Scholar
  6. Bourdeix R, Leroy T (2018) Preparing the world first regional coconut varietal contest. In: Bourdeix R, Labouisse JP, Mapusua K et al (eds) Coconut planting material for the Pacific region. Available at the URL: https://replantcoconut.blogspot.com
  7. Bourdeix R, Prades A (2018) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier. Available at the URL: https://www.bioversityinternational.org/fileadmin/user_upload/Cogent_bourdeix_2018.pdfGoogle Scholar
  8. Bourdeix R, N’Cho YP, Sangare A et al (1992) The improved PB 121 coconut hybrid, a cross between the Malayan Yellow Dwarf and selected West African Tall parents. Oleagineux (France) 47(11):619Google Scholar
  9. Bourdeix R, Konan JL, N’Cho YP (2005) Coconut : a guide to traditional and improved varieties. Editions Diversiflora, Montpellier, p 94Google Scholar
  10. Bourdeix R, Baudouin L, Bambridge T et al (2009) Dynamics and conservation of the coconut palm Cocos nucifera L. In: The Pacific region: towards a new conservation approach. Paper presented at the 11th Pacific science inter-congress, March 2–6, Tahiti, French PolynesiaGoogle Scholar
  11. Bourdeix R, Batugal P, Oliver JT et al (2010) Catalogue of conserved coconut germplasm. International Plant Genetic Resources Institute – Regional Office for Asia, the Pacific and Oceania (IPGRI-APO), SerdangGoogle Scholar
  12. Bourdeix R, Allou K, Omuru E (2018a) 3.3.3 triplication of germplasm in distinct geographical sites – chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources. Biodiversity International, Montpellier, pp 133–138Google Scholar
  13. Bourdeix R, Baudouin L, Santos GA (2018b) 2.1.3 international coconut nomenclature – chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Biodiversity International, Montpellier, pp 39–40Google Scholar
  14. Bourdeix R, Chong F, Maskromo I (2018c) 3.5.4 islands most isolated and/or endangered by climate change – chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Biodiversity International, Montpellier, p 152Google Scholar
  15. Bourdeix R, Devakumar K, Pole F (2018d) 2.3.4 collecting germplasm – chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Biodiversity International, Montpellier, pp 60–63Google Scholar
  16. Cardena R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci Hortic 98(3):257–263Google Scholar
  17. Chowdappa P, Hegde V, Mohan C et al (2018) Pest and disease-free coconut. Indian Coconut J 60(12):24–25. Available at the URL: https://krishi.icar.gov.in/jspui/bitstream/123456789/13476/1/Pest%20&Disease.pdfGoogle Scholar
  18. Coppens d’Eeckenbrugge G, Komba P, Ullivarri V (2018a) 3.5.3 filling geographical gaps – chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 150–152Google Scholar
  19. Coppens d’Eeckenbrugge G, Duong NTK, Ullivarri A (2018b) 2.4.3 geographic information systems – chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 71–74Google Scholar
  20. Cueto CA, Johnson VB, Bourdeix R et al (2012a) Validation of a coconut embryo-culture protocol for the international exchange of germplasm, Terminal Report (15/10/2009–28/02/2012). Bioversity International, Rome. Available at the URL: http://www.cogentnetwork.org/images/projects/tr-c60014-terminal%20report-finalv4.pdfGoogle Scholar
  21. Cueto CA, Johnson VB, Bourdeix R et al (2012b) Technical guidelines for the safe movement and duplication of coconut (Cocos nucifera L.) germplasm using embryo culture transfer protocols. COGENT; Bioversity International, Montpellier. Available at the URL: http://www.cogentnetwork.org/images/publications/tg-coconutembryotransfer.pdfGoogle Scholar
  22. Daramcoum WAMP, Konan Konan JL, Martial YSD et al (2018) Molecular diagnosis of phytoplasma transmission from zygotic embryos to in vitro regenerated plants of coconut palm (Cocos nucifera L.). Afr J Biotechnol 17(26):862–869Google Scholar
  23. Dumet D, Diebiru E, Adeyemi A et al (2013) Cryopreservation for the ‘in perpetuity’ conservation of yam and cassava genetic resources. CryoLetters 34(2):107–118PubMedGoogle Scholar
  24. Dumhai R, Wanchana S, Saensuk C et al (2019) Discovery of a novel CnAMADH2 allele associated with higher levels of 2-acetyl-1-pyrroline (2AP) in yellow dwarf coconut (Cocos nucifera L.). Sci Hortic 243:490–497Google Scholar
  25. Foale MA (1987) Coconut germplasm in the South Pacific Islands (No. 113880). Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  26. Franqueville HD, Taffin GD, Sangare A et al (1989) Detection of phytophthora heveae tolerance characters in coconut in Côte d’Ivoire. Oléagineux (Paris) 44(2):93–103Google Scholar
  27. Gunn BF, Baudouin L, Olsen KM (2011) Independent origins of cultivated coconut (Cocos nucifera L.) in the old-world tropics. PLoS One 6(6):e21143PubMedPubMedCentralGoogle Scholar
  28. Gunn B, Myrie WW, Baudouin L (2018) 1.1.1 origin, history and dynamics of coconut cultivation – chapter 1. Introduction to the global coconut strategy. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 3–7Google Scholar
  29. Hamelin C, Bourdeix R, Baudouin L (2005) The international coconut genetic resources database. Coconut Genetic Resources, 427Google Scholar
  30. Harries HC (1978) The evolution, dissemination and classification of Cocos nucifera L. Bot Rev 44(3):265–319Google Scholar
  31. Harries HC, Romney DH (1974) Maypan: an Fl hybrid coconut variety for commercial production in Famaica. World CropsGoogle Scholar
  32. Hazlewood D (1850) A Feejeean and English dictionary: with examples of common and peculiar modes of expression and uses of words. Also, containing brief hints on native customs, proverbs, the native names of the natural productions of the islands, notices of the islands of Feejee, and a list of the foreign words introduced. Printed at the Wesleyan Mission Press, VewaGoogle Scholar
  33. Hill AW (1929) The original home and mode of dispersal of the coconut. Nature 124(3117):133Google Scholar
  34. Karun A, Sajini KK, Niral V et al (2014) Coconut (Cocos nucifera L.) pollen cryopreservation. CryoLetters 35(5):407–417PubMedPubMedCentralGoogle Scholar
  35. Konan KJNL, Koffi KE, Konan JL et al (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistants to lethal yellowing disease. Afr J Biotechnol 6(4):341–347Google Scholar
  36. Kumar V, Prades A, Perera SACN et al (2018) 3.5.1 compact dwarfs and other special varieties – chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 148–149Google Scholar
  37. Labouisse JP, Bourdeix R (2003) Coconut germplasm collecting, characterisation and conservation in Cook Islands, Kiribati, Marshall Islands and Tuvalu: Project LOA IPGRI 00/015, March 2000–February 2001. Final report Santo: VARTC, p 126Google Scholar
  38. Leclerc C, Coppens d’Eeckenbrugge G (2011) Social organization of crop genetic diversity. The G× E× S interaction model. Diversity 4(1):1–32Google Scholar
  39. Liberty C, Foale M, Arancon R (2018) 1.1.2 cultivation and current production of coconut – chapter 1. Introduction to the global coconut strategy. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 7–9Google Scholar
  40. Marechal H (1928) Observations and preliminary experiments on the coconut palm with a view to developing improved seed nuts for Fiji. Fiji Agric J 1(2):16–45Google Scholar
  41. Martinez RT, Baudouin L, Berger A et al (2010) Characterization of the genetic diversity of the Tall coconut (Cocos nucifera L.) in the Dominican Republic using microsatellite (SSR) markers. Tree Genet Genomes 6(1):73–81Google Scholar
  42. Meerow AW, Wisser RJ, Brown SJ et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji dwarf cultivar. Theor Appl Genet 106(4):715–726PubMedGoogle Scholar
  43. Mpunami A, Mugini J, Tembo P et al (2013) Disease control research. In: Kullaya A, Temu N, Seguni Z, Mpunami A, Chipungahelo G, Masumbuko L, Mkumbo K, MAdulu R (eds) Twenty-five years of coconut research and development in Tanzania. Mikocheni Agricultural Research Institute, Dar es Salaam, pp 99–155Google Scholar
  44. Novarianto H, Maskromo I, Dinarti D et al (2014) Production technology for kopyor coconut seednuts and seedlings in Indonesia. CORD Int J Coconut Res Dev 30(2):31–40Google Scholar
  45. Novarianto H, Maskromo I, Mashud N et al (2017) Development of coconut sugar by using Dwarf coconuts. Final report of collaboration research the IAARD and PT. UNILIVER, p 57Google Scholar
  46. Novarianto H, Tulalo M, Mawardi S et al (2018) BidoTall coconut the Dumpy as pollen source to produce high quality coconut hybrids. Paper presented at the 48th APCC COCOTECH Conference & Exhibition, 20–24 August, The Berkeley Hotel Pratunam, Bangkok, ThailandGoogle Scholar
  47. Orolfo MB, Estioko LP, Rodriguez MJB (2000) Screening of coconut populations for resistance to coconut cadang-cadang viroid (CCCVd). PCA-ARDB Annual ReportGoogle Scholar
  48. Oropeza C, Cordova I, Puch Hau C et al (2017) Detection of lethal yellowing phytoplasma in coconut plantlets obtained through in vitro germination of zygotic embryos from the seeds of infected palms. Ann Appl Biol 171(1):28–36Google Scholar
  49. Perera L (eds) (2018) 3 where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 113–176Google Scholar
  50. Perera SACN, Dissanayaka HDMAC (2013) Management of the Weligama coconut leaf wilt disease: screening and breeding coconuts for resistance/tolerance to WCLWD. In: Gunasena HPM, Gunethilake HAJ, Fernando LCP, Everard JMDT, Appuhamy PAHN (eds) Wiligama coconut leaf Wilt disease – six years after (sds). Coconut Research Institute, p 96–106Google Scholar
  51. Perera SACN, Herath HMNB, Wijesekera HTR et al (2014) Evaluation of coconut germplasm in Weligama and Matara area in the southern province of Sri Lanka for resistance to Weligama coconut leaf wilt disease. COCOS 20(1):15–20Google Scholar
  52. Perera SACN, Kamaral LC, Fernando WBS (2015) Molecular assessment of Cocos nucifera L. Var. Sri Lanka yellow dwarf for genetic purity and aceria mite tolerance. Int J Mol Evol Biodivers 5(1):1–5Google Scholar
  53. Perera SACN, Odewale JO, Omuru E et al (2018) 3.5.2 collecting for pest and disease tolerance – chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, p 150Google Scholar
  54. Pratt G (1862) A Samoan dictionary: English and Samoan, and Samoan and English; with a short grammar of the Samoan dialect. London Missionary Society’s Press, London, UKGoogle Scholar
  55. Rabone S (1845) A vocabulary of the Tongan language, arranged in alphabetical order: to which is annexed a list of idiomatic phrases. Wesleyan Mission PressGoogle Scholar
  56. Ramanatha Rao V, Hodgkin T, Bourdeix R (2005) Locating coconut genetic diversity, pp 13–31. In: Batugal P, Ramanatha Rao V (eds) Coconut genetic resources. IPGRI-APO, Serdang, p 779. http://www.cogentnetwork.org/index.php?page=booksGoogle Scholar
  57. Randles JW, Rodriguez MJB (2003) Coconut Cadang-Cadang viroid. In: Hadidi A, Flores R, Randles JW, Semancik JS (eds) Viroids, 1st edn. CSIRO Publishing, Collingwood, pp 233–241Google Scholar
  58. Romney DH (1972) Past studies on and present status of lethal yellowing disease of coconuts. PANS Pest Articles News Summ 18(4):386–395Google Scholar
  59. Ruas M, Hamelin C, Bourdeix R (2018) 2.4.2 managing international coconut databases – chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 69–71Google Scholar
  60. Sauer JD (1967) Plants and man on the Seychelles coast: a study in historical biogeography. Plants and man on the Seychelles coast: a study in historical biogeography. The University of Wisconsin Press, Madison, Milwaukee, p 132Google Scholar
  61. Sauer JD (1971) A reevaluation of the coconut as an indicator of human dispersal. In: Riley CL, Kelley JC, Campbell WP, Rands RL (eds) Man across the sea. Problems of pre-Columbian contacts. University of Texas Press, Austin, pp 309–319Google Scholar
  62. Schuiling M, Kaiza DA, Mpunami A (1992) Lethal disease of coconut palm in Tanzania. II. History, distribution and epidemiology. Oleagineux 47:516. (No. A-)Google Scholar
  63. Whitehead RA (1968) Selecting and breeding coconut palms (Cocos nucifera L.) resistant to lethal yellowing disease. A review of recent work in Jamaica. Euphytica 17(1):81–101Google Scholar
  64. Zizumbo-Villarreal D, Colunga-GarcíaMarín P (2001) Morphophysiological variation and phenotypic plasticity in Mexican populations of coconut (Cocos nucifera L). Genet Resour Crop Evol 48:547–554Google Scholar
  65. Zizumbo-Villarreal D, Hernández F, Harries HC (1993) Coconut varieties in Mexico. Econ Bot 47:65–78Google Scholar
  66. Zizumbo-Villarreal D, Colunga-GarcíaMarín P, Fernández-Barrera M et al (2008) Mortality of Mexican coconut germplasm due to lethal yellowing. Bulletin de Ressources Phytogénétiques, p 23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Roland Bourdeix
    • 1
    • 2
    Email author
  • Gilles Coppens d’Eeckenbrugge
    • 1
    • 2
  • Jean Louis Konan
    • 3
  • Hengky Novarianto
    • 4
  • Chandrika Perera
    • 5
  • Valentin Luis Fredrik Wolf
    • 1
    • 2
  1. 1.CIRAD – UMR AGAP, CIRAD (Agricultural Research for Development)MontpellierFrance
  2. 2.AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
  3. 3.National Centre for Agricultural ResearchAbidjanIvory Coast
  4. 4.Indonesian Coconut and Palm Research Institute (IPRI)ManadoIndonesia
  5. 5.Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka

Personalised recommendations