Towards Innovative Coconut Breeding Programs

  • H. D. Dharshani BandupriyaEmail author
  • Chandrika Perera
  • Messias G. Pereira
  • Roland Bourdeix


Coconut farming is sometimes constrained by low productivity and poor returns on investment. Breeding for desirable traits and higher productivity is one of the most efficient options to overcome these challenges. This chapter discusses the strategies presently applied toward the production of desirable coconut varieties using conventional breeding and the possible applications of modern biotechnological tools to overcome some biological constraints. The analysis presented hereunder shows that most conventional coconut breeding programs are currently facing both material and methodological impasses. The budgets and experimental areas allocated to these programs often remain insufficient to reach substantial genetic progress. The improvement of hybrids is neglected and often methodologically limited. The integration of new biotechnologies will help improve the situation. In vitro culture of various coconut tissues and explants gives promising results in embryo rescue, somatic embryogenesis, and doubled haploid production. Molecular marker technology has been applied to describe the genetic diversity of conserved accessions and to genome mapping for marker-assisted selection. The coconut genome was recently published enabling genomics and bioinformatics research. Certain groups have reported their attempts on genetic transformation studies. Development of strategies through capacity building and promotion of research collaboration is required to strengthen coconut breeding. The authors recommend an international team to audit major genetic improvement programs with special attention to funding issues for the various breeding operations and to the balance between field trials and use of new technologies.


Coconut accessions Coconut breeding Intravarietal selection Synthetic varieties Reciprocal selection Physical maps DNA markers Rapid multiplication 


  1. Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66:790–800Google Scholar
  2. Armendariz BHC, Orapeza C, Chan JL et al (2006) Pollen fertility and female flower anatomy of micropropagated coconut palms. Rev Fitotec Mex 29:373–378Google Scholar
  3. Ashburner GR, Thompson WK, Halloran GM (1997) RADP analysis of South Pacific coconut palm populations. Crop Sci 37:992–997CrossRefGoogle Scholar
  4. Breiman A, Rotem-Abarbanell A, Karp A et al (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74(1): 104–112Google Scholar
  5. Bandaranayake CK, Kearsey MJ (2005) Genome mapping, QTL analysis and MAS: importance, principle, constraints and application in coconut. Int Plant Genet Resour Newsl 142:47–54Google Scholar
  6. Bandupriya HDD, Fernando SC, Vidhanaarachchi VRM (2016) Micropropagation and androgenesis in coconut: an assessment of Sri Lankan implication. Cocos 22:31–47Google Scholar
  7. Bandupriya HDD, Iroshini WWMA, Vidhanaarachchi VRM et al (2017) Genetic fidelity testing using SSR marker assay confirms trueness to type of micropropagated coconut (Cocos nucifera L.) plantlets derived from unfertilized ovaries. Open Plant Sci J 10:46–54Google Scholar
  8. Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software use with coconuts. Burotrop Bull 17:16–20Google Scholar
  9. Baudouin L, Lebrun P, Konan JL et al (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112:258–268Google Scholar
  10. Bourdeix R (1988) Effectiveness of mass selection on the yield component of coconut. Oleagineux 43:283–295Google Scholar
  11. Bourdeix R, Santos G, Labouisse JP et al (2005) Useful definition of terms and nomenclature. In: Batugal P, Ramanatha Rao V, Oliver J (eds) Coconut genetic resources. IPGRI, Rome, pp 9–10Google Scholar
  12. Brown WL (1983) Genetic diversity and genetic vulnerability – an appraisal. Econ Bot 37:4–12CrossRefGoogle Scholar
  13. Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: Tropical species. Springer, New York, pp. 327–375Google Scholar
  14. Batugal P, Konan JL, Sanaoussi A et al (2005) Multilocation coconut hybrid trials in three African and three LAC countries. Coconut Genetic Resources, 326Google Scholar
  15. Bourdeix R, Kumar V (2018) Compact and “super” dwarf varieties. Coconut planting material for the Pacific region. Retreived from :
  16. Bourdeix R, Baudouin L, Santos GA (2018a) 2.1.3 International Coconut nomenclature - Chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 39–40Google Scholar
  17. Bourdeix R, Yace G, Sileye T (2018b) 3.7.1 Global objectives in terms of planting material - Chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds.) A global strategy for the conservation and use of coconut genetic resources 2018-2028. Bioversity International, Montpellier, France, pp 155–156Google Scholar
  18. Bourdeix R, Meunier J, N'Cho YP (1991a) Coconut (Cocos nucifera L.) selection strategy Il - lmprovement of Tall x Tall hybrids. Oléagineux 46(7):267–282Google Scholar
  19. Bourdeix R, Meunier J, N'Cho YP (1991b) Coconut (Cocos nucifera L.) selection strategy III- lmprovement of Dwarf x Tall hybrids. Oléagineux 46(10):361–374Google Scholar
  20. Bourdeix R, N’Cho YP, Le Saint JPOF (1990) A coconut (Cocos nucifera L.) selection strategy. I. Rundown of achievements. Oléagineux 45:359–371Google Scholar
  21. Bourdeix R, Sangare A, Le Saint JP et al (1989) Efficacité des tests hybrides d'aptitude individuelle à la combinaison chez le cocotier: premiers résultats. Oléagineux 44(5):209–214Google Scholar
  22. Bourdeix R (1999) Selection and breeding. In: Olher JG (ed) Modern coconut management: palm cultivation and products. Intermediate Technology Publications, London, United Kingdom, pp 117–195Google Scholar
  23. Cardena R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Scientia Horticulturae 98:257–263CrossRefGoogle Scholar
  24. Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure to make maximum use of both general and specific combining ability. Agron J 41:360–367CrossRefGoogle Scholar
  25. Dasanayake PN, Everard JMDT, Karunanayake EH et al (2003) Characterization of coconut germplasm by microsatellite markers. Trop Agric Res 15:51–61Google Scholar
  26. Day A, Ellis TH (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9:671–678CrossRefGoogle Scholar
  27. Duran Y, Rohde W, Kullaya A et al (1997) Molecular analysis of East African tall coconut genotypes by DNA marker technology. J Genet Breed 51:185–193Google Scholar
  28. Duong NTK, Yace G, Pereira MG (2018) 3.7.4 International breeding experiments - Chapter 3. Where we need to be to secure diversity and promote use In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 159–162Google Scholar
  29. Everard JMDT (1996) Use of molecular markers for breeding of the coconut palm (Cocos nucifera L.). University of New England, ArmidaleGoogle Scholar
  30. Fernando SC, Weerakonn LK, Perera PIP et al (2004) Genetic fidelity and ex vitro performance of tissue cultured coconut plants. In: Peiris TSG, Ranasinghe CS (eds) Proceedings of the international conference of the coconut research Institute of Sri Lanka- Part II. CRI, LunuwilaGoogle Scholar
  31. Guiderdoni E, Galinato E, Luistro J et al (1992) Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224Google Scholar
  32. Herran A, Estioko L, Becker D et al (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101:292–300Google Scholar
  33. Iroshini WWMA (2017) Studies on cryopreservation of embryogenic callus from unfertilized ovaries using the encapsulation- dehydration technique and post thaw plant regeneration in coconut (Cocos nucifera L.). Department of Plant Sciences. University of Colombo, ColomboGoogle Scholar
  34. Iroshini WWMA, Jayasekera GAU, Perera SACN et al (2017) Genetic stability of coconut embryogenic calli after cryopreservation by encapsulation-dehydration technique. In: Proceedings of the 6th YSF symposium Peradeniya, Sri LankaGoogle Scholar
  35. Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:25eGoogle Scholar
  36. Konan KJN, Koffi KE, Konan JL et al (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistants to lethal yellowing disease. Afr J Biotechnol 6:341–347Google Scholar
  37. Lebrun P, N'Cho YP, Seguin M et al (1998) Genetic diversity in coconut (Cocos nucifera L) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108Google Scholar
  38. Lebrun P, Baudouin L, Bourdeix R et al (2001) Construction of a linkage map of the Rennell Island tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970Google Scholar
  39. Ledo AS, Passos EEM, Fontes HR et al (2019) Advances in Coconut palm propagation. Rev Bras Frutic 41Google Scholar
  40. Liyanage DV (1954) Controlled pollination of coconut palms. Ceylon Coconut Q 5:135–138Google Scholar
  41. Liyanage DV (1958) Varieties and forms of coconut palms grown in Ceylon. Ceylon Coconut Q 9:1–10Google Scholar
  42. Liyanage DV, Wickramaratne MRT, Jayasekara C (1988) Coconut breeding in Sri Lanka: a review. Cocos 6 (1): 1 – 26 Google Scholar
  43. Marechal H (1926) Observations and preliminary experiments on the coconut with a view to developing improved seednuts for Fiji. Agri J Fiji 1:16–45Google Scholar
  44. Maskromo I (2015) Karakterisasi dan pemanfaatan plasma nutfah melalui pendekatan pemuliaan dan molekuler untuk peningkatan hasil buah kopyor dan kualitas benih kopyor. Bogor Agricultural University, BogorGoogle Scholar
  45. Meerow AW, Wisser RJ, Brown JS et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106:715–726Google Scholar
  46. Moore D, Alexander L, Hall RA (1989) The coconut mite, Eriophyes guerreronis Keifer in St. Lucia: yield losses and attempts to control it with acaricide, polybutene and Hirsutella fungus. Trop Pest Manag 35:83–89CrossRefGoogle Scholar
  47. Maluszynska J (2003) Cytogenetic tests for ploidy level analyses: Chromosome counting. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Netherlands, pp 391–395Google Scholar
  48. Nair RV, Thomas RJ, Jacob PM (2010) Breeding for resistance to coconut root (wilt) disease. In: Thomas GV, Chandramohanan R, Jacob PM, Krishnakumar V (eds) Coconut root (wilt) management. CPCRI, Kasaragod, pp 58–71Google Scholar
  49. Nair RV, Jerard BA, Thomas RJ (2016) Coconut breeding in India. In: Al-Khayri JM, Jain SM (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 257–279CrossRefGoogle Scholar
  50. Nejat N, Cahill DM, Vadamalai G et al (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290:1899–1910Google Scholar
  51. Nguyen QT, Bandupriya HDD, Villalobo AL et al (2015) Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242:1059–1076Google Scholar
  52. Nguyen QT, Bandupriya HDD, Foale M et al (2016) Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiol Biochem 109:579–589Google Scholar
  53. Nuce de Lamothe MD, Rognon F (1986) Cocotiers hybrides ou cocotiers grands, un choix basé sur des résultats. Oléagineux (France) 41:549–555Google Scholar
  54. Nunez TC, de Paz VM (2004) Growth and development of F2 pure macapuno palms. Philipp J Crop Sci 19:69Google Scholar
  55. Oropeza C, Engelman F, Cueto CA et al (2018) 2.2.4 In vitro culture and cryopreservation – Chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 50–53Google Scholar
  56. Patel JS (1938) The coconut: a monograph. Government Press, MadrasGoogle Scholar
  57. Perera L (2018) Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, MontpellierGoogle Scholar
  58. Perera L, Russell JR, Provan J et al (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550Google Scholar
  59. Perera L, Russell JR, Provan J et al (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:344–346Google Scholar
  60. Perera L, Russell JR, Provan J et al (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L). Genome 43:15–21Google Scholar
  61. Perera L, Russell JR, Provan J et al (2003) Studying the genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132:121–128Google Scholar
  62. Perera PIP, Hocher V, Verdeil JL et al (2008a) Androgenic potential of coconut (Cocos nucifera L.). Plant Cell Tissue Org Cult 92:293–302Google Scholar
  63. Perera PIP, Perera L, Hocher V et al (2008b) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703Google Scholar
  64. Perera PIP, Yakandawala DMY, Hocher V et al (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tissue Org Cult 96:171–180Google Scholar
  65. Perera L, Manimekalai R, Sudarsono S et al (2016) Coconut. Biotechnology of Plantation Crops. Central Plantation Crop Research Institute, Kasaragod, pp 219–239Google Scholar
  66. Perez-Nunez MT, Chan JL, Saenz L et al (2006) Improved somatic embryogenesis from coconut (Cocos nucifera L.) plumule explants cultured in vitro. In vitro cellular & developmental biology. Plant 42:37–43Google Scholar
  67. Petchpiroon C, Thirakul A (1994) Coconut breeding programme in Thailand. Workshop on standardization of coconut breeding research techniques. IPGRI/COGENT, GTZ, Marc Delorme Coconut Station, Port Bouet, Cote d’IvoireGoogle Scholar
  68. Phoeurk C, Somana J, Sornwatana T et al (2018)Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut. Phytochemistry 156:33–42Google Scholar
  69. Preethi P, Rajesh MK, Rahul CU et al (2016) Identification and utilization of informative EST-SSR markers for genetic purity testing of coconut hybrids. J Plant Crop 44:77–84Google Scholar
  70. Perera PIP, Hocher V, Verdeil JL et al (2007) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26(1): 21–28Google Scholar
  71. Rachana KR, Naganeeswaran SA et al (2016) Cloning, characterization and expression analysis of NBS-LRR-type resistance gene analogues (RGAs) in coconut. Acta Bot Croat 75:1–10Google Scholar
  72. Rajesh MK, Sabana AA, Rachana KE et al (2015) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through scot analysis. Biotechnology 5:999–1006Google Scholar
  73. Rivera R, Edwards KJ, Barker JHA et al (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42:668–675Google Scholar
  74. Rohde W, Becker D, Kullaya A et al (1999) Analysis of coconut germplasm biodiversity by DNA marker technologies and construction of a first genetic linkage map. In: Oropeza C, Verdeil JL, Ashburner GR, Cardena R, Santamaria JM (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 99–120Google Scholar
  75. Ruas M (2018) Genetic resources information management – chapter 2. Where we are today. In: Prades RBA (ed) a global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 68–74Google Scholar
  76. Mishra R, Rao GJN (2016) In-vitro Androgenesis in Rice: Advantages, Constraints and Future Prospects. Rice Science 23 (2):57–68Google Scholar
  77. Sisunandar A, Sopade PA, Yohannes MS et al (2010) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61(3):289–296Google Scholar
  78. Saensuk C, Wanchana S, Choowongkomon K et al (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334Google Scholar
  79. Santos GA (1990) Activities in coconut genetic resources collection, conservation and genetic improvement in the Philippines. Philipp J Coconut Stud 15:16–20Google Scholar
  80. Santos PHAD (2016) Melhoramento Genético Do Coqueiro (Cocos nucifera L.): Capacidade Combinatória E Diversidade Genética Via Rad-Sequencing. Campos dos Goytacazes – RJ. Universidade Estadual do Norte Fluminense Darcy RibeiroGoogle Scholar
  81. Santos GA, Rivera RL (1994) Coconut breeding programme of the Philippines. Workshop on standardization of coconut breeding research techniques. IPGRI/COGENT, GTZ, Marc Delorme Coconut Station, Port Bouet, Cote d’IvoireGoogle Scholar
  82. Shalini KV, Manjunantha S, Lebrun P et al (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50:35–42Google Scholar
  83. Shimada T (1981) Haploid plants regenerated from the pollen callus of wheat (Triticum aestivum L.). Jpn J Genet 56:581–588CrossRefGoogle Scholar
  84. Sisunandar A, Alkhikmah A, Husin A et al (2018) Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of Kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. In Vitro Cell Dev Biol Plant 54:508–517Google Scholar
  85. Soh AC, Wong G, Tan CC et al (2011) Commercial-scale propagation and planting of elite oil palm clones: research and development towards realization. J Oil Palm Res 23:935–952Google Scholar
  86. Santos GA, Batugal P, Othman A et al (1996) Manual on standardized research techniques in coconut breeding (STANTECH). COGENT/IPGRI–APO, Serdang, Selangor, Malaysia pp 46Google Scholar
  87. Teulat B, Aldam C, Trehin R et al (2000) An analysis of genetic diversity in coconut (Cocos nucifera L.) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100:764–771Google Scholar
  88. Vargas AG, Cabanos CS, Garcia RN et al (2018) Cloning, molecular analysis, and developmental expression of 3 oleosin cDNA isoforms in coconut (Cocos nucifera L.). J Hortic Sci Biotechnol 93:255–263Google Scholar
  89. Vidhanaarachchi VRM, Fernando SC, Perera PIP et al (2013) Application of un-fertilized ovary culture to identify elite mother palms of Cocos nucifera L. with regenerative potential. J Natl Sci Found Sri 41(1)Google Scholar
  90. Xiao Y, Xu P, Fan H et al (2017) The genome draft of coconut (Cocos nucifera). Giga Sci 6:1–11Google Scholar
  91. Yan W, Liu L, Li CX et al (2015) Transcriptome sequencing and analysis of the coconut leaf beetle, Brontispa longissima. Genet Mol Res 14:8359–8365Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • H. D. Dharshani Bandupriya
    • 1
    Email author
  • Chandrika Perera
    • 2
  • Messias G. Pereira
    • 3
  • Roland Bourdeix
    • 4
    • 5
  1. 1.Department of Plant Sciences, Faculty of ScienceUniversity of ColomboColomboSri Lanka
  2. 2.Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Universidade Estadual do Norte Fluminense, Campos dos GoytacazesRio de JaneiroBrazil
  4. 4.CIRAD – UMR AGAPAgricultural Research for DevelopmentMontpellierFrance
  5. 5.AGAP, University Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance

Personalised recommendations