Advertisement

Germplasm Reestablishment and Seedling Production: Embryo Culture

  • Julianne BiddleEmail author
  • Quang Nguyen
  • Zhihua H. Mu
  • Mike Foale
  • Steve Adkins
Chapter
  • 33 Downloads

Abstract

This chapter discusses coconut embryo culture (EC) including the morphology and physiology of the zygotic coconut embryo, culture types and growth conditions, applications such as the use of the EC technique for the collection of germplasm from isolated/distant areas, conservation (cryopreservation) and the dissemination of elite germplasm, and as a starting point for clonal propagation (via somatic embryogenesis). The technique is most commonly recognized for its application to coconut types that generally don’t germinate in vivo. As EC is the foundation tissue culture method for cloning, propagation, conservation, and transformation of coconut, the technique has been widely documented. However, the method is generally underused, and protocols have room for improvement. Key enhancements needed are method optimizations to ensure high survival rates for a wide range of genotypes, in a variety of laboratories. Losses can be high during acclimatization and transfer to field conditions.

Notes

Acknowledgments

The authors greatly appreciate the support from Kokonas Indastri Koporesen (KIK) and the Australian Centre for International Agricultural Research (ACIAR).

References

  1. Acker JP, Adkins S, Alves A et al (2017) Feasibility study for a safety back-up cryopreservation facility. Independent expert report, Rome, Italy, July 2017Google Scholar
  2. Adkins S (2007) Coconut tissue culture for clonal propagation and safe germplasm exchange in Indonesia, Vietnam, Papua New Guinea and the Philippines. Adoption of ACIAR project outputs: studies of projects completed in 2006–07Google Scholar
  3. Adkins SW, Samosir YMS (2002) Embryo culture activities at the University of Queensland. In: Engelmann F, Batugal P, Oliver L (eds) Coconut embryo in vitro culture: Part II. Merida, Mexico, pp 163–168Google Scholar
  4. Adkins SW, Samosir YMS, Ernawati A et al (1998) Control of ethylene and use of polyamines can optimise the conditions for somatic embryogenesis in coconut (Cocos nucifera L.) and papaya (Carica papaya L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species. Brisbane, Australia, pp 459–466Google Scholar
  5. Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66:790–800Google Scholar
  6. Andronescu DI (1919) Germination and further development of the embryo of Zea mays separated from the endosperm. Am J Bot 6:443–452Google Scholar
  7. Antonova ID (2009) Somatic embryogenesis for micropropagation of coconut (Cocos nucifera L.). PhD thesis, The University of Queensland, AustraliaGoogle Scholar
  8. Ashburner GR, Thompson WK, Burch JM (1993) Effect of alpha-naphthaleneacetic acid and sucrose levels on the development of cultured embryos of coconut. Plant Cell Tissue Org 35:157–163Google Scholar
  9. Ashburner GR, Faure M, Tomlinson DR et al (1995) A guide to the zygotic embryo culture of coconut palms (Cocos nucifera L.). ACIAR technical report series, vol 36. Australian Centre for International Agricultural Research, Canberra, AustraliaGoogle Scholar
  10. Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37:992–997Google Scholar
  11. Assy-Bah B, Durand-Gasselin T, Engelmann F et al (1989) The in vitro culture of coconut (Cocos nucifera L.) zygotic embryos. Revised and simplified method of obtaining coconut plantlets for transfer to the field. Oleagineux 44:515–523Google Scholar
  12. Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53(22):1215–1216Google Scholar
  13. Basu A, Sethi U, Guhamukherjee S (1988) Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-I activity. J Exp Bot 39:1735–1742Google Scholar
  14. Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 327–375Google Scholar
  15. Bhallasarin N, Bagga S, Sopory SK et al (1986) Induction and differentiation of callus from embryos of Cocos nucifera L. by IAA-conjugates. Plant Cell Rep 5:322–324Google Scholar
  16. Bioversity (2012) Validation of a coconut embryo-culture protocol for the international exchange of germplasm final technical and financial report. Global Crop Diversity Trust, Maccarese (Rome)Google Scholar
  17. Bourdeix R, Baudouin L, Billotte N et al (2001) Coconut. In: Harrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Science Publishers, Enfield, pp 106–127Google Scholar
  18. Branton RL, Blake J (1983) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678Google Scholar
  19. Brown HT (1906) On the culture of excised embryos of barley on nutrient solutions containing nitrogen in different forms. Trans Guiness Res Lab 1:288–299Google Scholar
  20. Buckner GD, Kastle JH (1917) The growth of isolated plant embryos. J Biol Chem 29:209–213Google Scholar
  21. Chan JL, Saenz L, Talavera C et al (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521PubMedGoogle Scholar
  22. Cordova I, Jones P, Harrison NA et al (2003) In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Mol Plant Pathol 4:99–108PubMedGoogle Scholar
  23. Cueto CA, Johnson VB, Engelmann F et al (2012) Technical guidelines for the safe movement and duplication of coconut (Cocos nucifera L.) germplasm using embryo culture transfer protocols. Bioversity International, Montpellier, FranceGoogle Scholar
  24. Cutter VM Jr, Wilson KS (1954) Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot Gaz 115:234–240Google Scholar
  25. De Guzman EV, Del Rosario DA (1964) The growth and development of Cocos nucifera L. makapuno embryo in vitro. Philipp Agric 48:82–94Google Scholar
  26. Dieterich K (1924) Uber Kutur von Embryonen ausserhalb des Samens. Flora 117:379–417Google Scholar
  27. Dubard M, Urbain JA (1913) Del influence de I’albumen sur development de I’embryon. CR Acad Sci Paris 156:1086–1089Google Scholar
  28. Duran Y, Rohde W, Kullaya A et al (1997) Molecular analysis of East African Tall coconut genotypes by DNA marker technology. J Genet Breed 51:279–288Google Scholar
  29. Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36:23–28Google Scholar
  30. Eeuwens CJ, Blake J (1977) Culture of coconut and date palm tissue with a view to vegetative propagation. Acta Hort 78:277–286Google Scholar
  31. Engelmann F (2002) Chapter 10: Coconut. In: Valerie CP, Jorge AS, Victor M, Villalobos A, Engelmann F (eds) In vitro collecting techniques for germplasm conservation, vol IPGRI technical bulletin no. 7. International Plant Genetic Resources Institute, Rome, pp 68–71Google Scholar
  32. Engelmann F, Malaurie B, N'Nan O (2011) In vitro culture of coconut (Cocos nucifera L.) zygotic embryos. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols. Springer, Calgary, pp 3–15Google Scholar
  33. Fernando SC, Gamage CKA (2000) Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci 151:193–198PubMedGoogle Scholar
  34. Fernando SC, Verdeil JL, Hocher V et al (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tissue Organ 72:281–283Google Scholar
  35. Fernando SC, Vidhanaarachchi VRM, Weerakoon LK et al (2010) What makes clonal propagation of coconut difficult? Asia Pac J Mol Biol Biotechnol 18:163–165Google Scholar
  36. Foale M (2003) The coconut odyssey: the bounteous possibilities of the tree of life. ACIAR monograph no. 101, CanberraGoogle Scholar
  37. Frison EA, Putter CAJ, Diekmann M (1993) FAO/IBPGR technical guidelines for the safe movement of coconut germplasm. Food and Agricultural Organisation of the United Nations/International Board for Plant Genetic Resources, RomeGoogle Scholar
  38. Fuentes G, Talavera C, Desjardins Y et al (2005a) High irradiance can minimize the negative effect of exogenous sucrose on photosynthetic capacity of in vitro grown coconut plantlets. Biol Plant 49:7–15Google Scholar
  39. Fuentes G, Talavera C, Oropeza C et al (2005b) Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In Vitro Cell Dev Plant 41:69–76Google Scholar
  40. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedGoogle Scholar
  41. Gupta PK, Kendurkar SV, Kulkarni VM et al (1984) Somatic embryogenesis and plants from zygotic embryos of coconut (Cocos nucifera L.) in vitro. Plant Cell Rep 3:222–225Google Scholar
  42. Gurr GM, Johnson AC, Ash GJ et al (2016) Coconut lethal yellowing diseases: a phytoplasma threat to palms of global economic and social significance. Front Plant Sci 7:1521PubMedPubMedCentralGoogle Scholar
  43. Haeng-hoon K, Engelman F (2018) 3.3.4 Cryogenebanking – Chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 139–142Google Scholar
  44. Hannig E (1904) Zur Physiologie Pflanzicher Embryonen.I. Uber die Kultur von Crucifere-Embryonen ausserhalb des Embryosacks. Bot Ztg 62:45–80Google Scholar
  45. Harrison NA, Jones P (2003) Diseases of coconut. Diseases of tropical fruit crops. CABI Publishing, Cambridge, MA. https://doi.org/10.1079/9780851993904.0197Google Scholar
  46. Hasan Awad A, Wanfei L, Qiang L et al (2016) Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS One 11(10):e0163990Google Scholar
  47. Haslam TM, Yeung EC (2011a) Zygotic embryo culture: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture methods and protocols. Humana Press, Totowa, pp 3–15Google Scholar
  48. Haslam TM, Yeung EC (2011b) Zygotic embryo culture: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture: methods and protocols. Springer, Calgary, pp 3–15Google Scholar
  49. Hocher V, Verdeil JL, Rival A et al (1999) Application of in vitro techniques to the conservation and propagation of coconut palms. In: Oropeza C, Verdeil JL, Ashburner GR, Cardeña R, Santamaría JM (eds) Current advances in coconut biotechnology. Springer, Dordrecht, pp 267–288Google Scholar
  50. Hornung R, Domas R, Lynch PT (2001) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. CryoLett 22:211–220Google Scholar
  51. Hu C-Y, Zanettini HB (1995) Embryo culture and embryo rescue for wide cross hybrids. In: Gamborg OL, Phillips GC (eds) Plant cell, tissue and organ culture fundamental methods. Springer, Berlin/HeidelbergGoogle Scholar
  52. Karp A (1999) The use of polymorphic microsatellites for assessing genetic diversity in coconut. In: Oropeza C, Ashburner GR, Verdeil JL, Cardena R, Santamaría JM (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 121–129Google Scholar
  53. Karunaratne S, Periyapperuma K (1989) Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci 62:247–253Google Scholar
  54. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25Google Scholar
  55. Koffi Y, N’Nan-Alla O, Konan Konan JL et al (2013) Morphological and agronomical characteristics of coconut (Cocos nucifera L.) palms produced from in vitro cultured zygotic embryos. In Vitro Cell Dev Biol Plant 49(5):1–6Google Scholar
  56. Laibach F (1929) Ectogenesis in plants: methods and genetic possibilities of propagating embryos otherwise dying in the seed. J Hered 20(5):201–208Google Scholar
  57. Lebrun P, Baudouin L, Bourdeix R et al (2001) Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44(6):962–970PubMedPubMedCentralGoogle Scholar
  58. Lee RF (2013) Cadang-cadang disease of palm and other diseases. Phytopathology 103:177–177Google Scholar
  59. Lopez-Villalobos A (2002) Roles of lipids in coconut (Cocos nucifera L.) embryogenesis. University of London, LondonGoogle Scholar
  60. López-Villalobos A, Dodds PF, Hornung R (2001) Changes in fatty acid composition during development of tissues of coconut (Cocos nucifera L.) embryos in the intact nut and in vitro. J Exp Bot 52:933–942PubMedGoogle Scholar
  61. López-Villalobos A, Hornung R, Dodds PF (2004) Hydrophobic metabolites of 2,4-dichlorophenoxyacetic acid (2,4-D) in cultured coconut tissue. Phytochemistry 65:2763–2774PubMedGoogle Scholar
  62. López-Villalobos A, Dodds PF, Hornung R (2011) Lauric acid improves the growth of zygotic coconut (Cocos nucifera L.) embryos in vitro. Plant Cell Tissue Organ 106:317–327Google Scholar
  63. Magdalita P, Damasco O, Samosir Y et al (2015) An enhanced embryo culture methodology for coconut (Cocos nucifera L.). Int J Innov Res Sci 4(10):485–493Google Scholar
  64. Meerow AW, Krueger RR, Singh R et al (2012) Coconut, date, and oil palm genomics. In: Genomics of tree crops. Springer, New York, pp 299–351Google Scholar
  65. Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143Google Scholar
  66. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  67. N’Nan O, Hocher V, Verdeil JL et al (2008) Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.). Cryo Lett 29:339–350Google Scholar
  68. N’Nan O, Borges M, Konan JLK et al (2012) A simple protocol for cryopreservation of zygotic embryos of ten accessions of coconut (Cocos nucifera L.). In Vitro Cell Dev Plant 48:160–166Google Scholar
  69. Nguyen QT, Bandupriya HDD, López-Villalobos A et al (2015) Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242(5):1059–1076PubMedPubMedCentralGoogle Scholar
  70. Nguyen QT, Bandupriya HDD, Foale M et al (2016) Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiol Biochem 109:579–589PubMedGoogle Scholar
  71. Novarianto H, Warokka J (2006) Past, present and future coconut research in Indonesia. Paper presented at the coconut revival – new possibilities for the ‘tree of life’. In: Proceedings of the international Coconut Forum held in Cairns, Australia, 22–24 November 2005. ACIAR proceedings no 125Google Scholar
  72. Nwite PA, Ikhajiagbe B, Owoicho I (2017) Germination response of coconut (Cocos nucifera L.) zygotic embryo. J Appl Sci Environ Manag 21(6):1019–1021Google Scholar
  73. Pan MJ, van Staden J (1998) The use of charcoal in in vitro culture - a review. Plant Growth Regul 26:155–163Google Scholar
  74. Pannetier C, Buffard-Morel J (1982) Production of somatic embryos from leaf tissues of coconut, Cocos nucifera L. In: Proceedings of the 5th international Plant Tissue Culture Congress, Tokyo, JapanGoogle Scholar
  75. Pech y Aké AE, Souza R, Maust B et al (2004) Enhanced aerobic respiration improves in vitro coconut embryo germination and culture. In Vitro Cell Dev Plant 40:90–94Google Scholar
  76. Pech y Aké AE, Maust B, Orozco-Segovia A et al (2007) The effect of gibberellic acid on the in vitro germination of coconut zygotic embryos and their conversion into plantlets. In Vitro Cell Dev Plant 43:247–253Google Scholar
  77. Pence VC, Sandoval JA, Villalobos VM et al (2002) In vitro collecting techniques for germplasm conservation, IPGRI technical bulletin. International Plant Genetic Resources Institute, RomeGoogle Scholar
  78. Perera L, Russell JR, Provan J (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96(3):545–550PubMedGoogle Scholar
  79. Perera L, Russell JR, Provan J (1999) Identification and characterisation of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:344–346PubMedGoogle Scholar
  80. Pérez-Núñez MT, Chan JL, Sáenz L et al (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev Plant 42:37–43Google Scholar
  81. Raghavan V, Torrey JG (1964) Effects of certain growth substances on the growth and morphogenesis of immature embryos of Capsella in culture. Plant Physiol 39:691–699PubMedPubMedCentralGoogle Scholar
  82. Rillo EP (1998) PCA's embryo culture technique in the mass production of Makapuno coconuts. In: Batugal PA, Engelmann F (eds) Coconut embryo in vitro culture: Part I. Proceedings of the first workshop on embryo culture, Banao, Guinobatan, Albay, Philippines, 27–31 October 1997. International Plant Genetic Resources Institute (IPGRI), Rome, pp 69–78Google Scholar
  83. Rillo EP, Paloma MBF (1991) Storage and transport of zygotic embryos of Cocos nucifera L. for in vitro culture. Plant Genet Resour Newslett 86:1–4Google Scholar
  84. Rillo EP, Cueto CA, Medes WR et al (2002) Development of an improved embryo culture protocol for coconut in the Philippines. In: Engelmann F, Batugal P, Oliver J (eds) Coconut embryo in vitro culture: Part II. Proceedings of second international on embryo culture workshop, Mérida, Yucatán, Mexico, 14–17 March 2000. International Plant Genetic Resources Institute (IPGRI), Rome, pp 41–65Google Scholar
  85. Rodriguez MJB, Estioko LP, Namia MIT et al (1997) Analysis of genetic diversity by RAPD. Philipp J Crop Sci 22:133–135Google Scholar
  86. Rohde W, Becker D, Kullaya A et al (1999) Analysis of coconut germplasm biodiversity by DNA marker technologies and construction of a first genetic linkage map. In: Oropeza C, Ashburner R, Verdeil J-L, Zizumbo D (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 99–120Google Scholar
  87. Sáenz L, Herrera-Herrera G, Uicab-Ballote F et al (2009) Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). Plant Cell Tissue Organ 100:301–308Google Scholar
  88. Sáenz-Carbonell L, Montero-Cortés M, Pérez-Nuñez T et al (2016) Somatic Embryogenesis in Cocos nucifera L. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 297–318Google Scholar
  89. Samosir YMS (1999) Optimisation of somatic embryogenesis in coconut (Cocos nucifera L.). PhD thesis, The University of Queensland, AustraliaGoogle Scholar
  90. Samosir YMS, Adkins SW (2004) Coconut embryo culture: CO2-enrichment and root aeration for improved seedling establishment. In: Peiris TSG, Ranasinghe CS (eds) Proceedings of the international conference of the Coconut Research Institute of Sri Lanka: Part II. The Coconut Research Institute Institute of Sri Lanka, Lunuwila, Sri Lanka, pp 77–91Google Scholar
  91. Samosir YMS, Adkins SW (2014) Improving acclimatization through the photoautotrophic culture of coconut (Cocos nucifera) seedlings: an in vitro system for the efficient exchange of germplasm. In Vitro Cell Dev Plant 50:493–501Google Scholar
  92. Samosir YMS, Godwin ID, Adkins SW (1998) An improved protocol for somatic embryogenesis in coconut (Cocos nucifera L.). In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species, vol 461, Brisbane, Australia, pp 467–475Google Scholar
  93. Samosir YMS, Godwin ID, Adkins SW (1999a) The use of osmotically active agents and abscisic acid can optimise the maturation of coconut somatic embryos. In: Oropeza C (ed) Current advances in coconut biotechnology. CAB International, Wallingford, pp 341–354Google Scholar
  94. Samosir YMS, Godwin ID, Adkins S (1999b) A new technique for coconut (Cocos nucifera) germplasm collection from remote sites: culturability of embryos following low-temperature incubation. Aust J Bot 47:69–75Google Scholar
  95. Samosir Y, Mashud N, Novarianto H et al (2008) Embryo culture manual: a new embryo culture protocol for coconut germplasm conservation and elite-type seedling production. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  96. Schopfer WH (1943) Plants and vitamins. Chronica Botanica Co, WalthamGoogle Scholar
  97. Sekar N, Veetil SK, Neerathilingam M (2013) Tender coconut water an economical growth medium for the production of recombinant proteins in Escherichia coli. BMC Biotechnol 13:1472–6750Google Scholar
  98. Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants – a review. Euphytica 89:325–337Google Scholar
  99. Sisunandar A, Samosir YMS, Adkins SW (2005) Towards the cryopreservation of coconut (Cocos nucifera L.). Paper presented at the Contributing to a Sustainable Future, Perth, AustraliaGoogle Scholar
  100. Sisunandar A, Rival A, Turquay P et al (2010a) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447PubMedPubMedCentralGoogle Scholar
  101. Sisunandar A, Sopade PA, Samosir YM et al (2010b) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61:289–296Google Scholar
  102. Sisunandar A, Novarianto H, Mashud N et al (2014) Embryo maturity plays an important role for the successful cryopreservation of coconut (Cocos nucifera). In Vitro Cell Dev Plant 50:688–695Google Scholar
  103. Sisunandar A, Alkhikmah A, Husin A et al (2015) Embryo incision as a new technique for double seedling production of Indonesian elite coconut type “Kopyor”. J Math Fundam Sci 47(3):252–260Google Scholar
  104. Sisunandar A, Alkhikmah T, Husin A et al (2018) Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of Kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. In Vitro Cell Dev Biol Plant 54(5):508–517Google Scholar
  105. Steinmacher DA, Guerra MP, Saare-Surminski K et al (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108(8):1463–1475PubMedPubMedCentralGoogle Scholar
  106. Talavera C, Contreras F, Espadas F et al (2005) Cultivating in vitro coconut palms (Cocos nucifera) under glasshouse conditions with natural light, improves in vitro photosynthesis nursery survival and growth. Plant Cell Tissue Organ 83:287–292Google Scholar
  107. Teixeira JB, Sondahl MR, Nakamura T et al (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ 40(2):105–111Google Scholar
  108. Teulat B, Aldam C, Trehin R (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771Google Scholar
  109. Thanh-Tuyen NT, De Guzman EV (1983) Formation of pollen embryos in cultured anthers of coconut (Cocos nucifera L.). Plant Sci Lett 29:81–88Google Scholar
  110. Tisserat B, Vandercook CE (1985) Development of an automated plant culture system. Plant Cell Tissue Organ 5:107–117Google Scholar
  111. Triques K, Rival A, Beule T et al (1997) Photosynthetic ability of in vitro grown coconut (Cocos nucifera L.) plantlets derived from zygotic embryos. Plant Sci 127:39–51Google Scholar
  112. Triques K, Rival A, Beule T et al (1998) Changes in photosynthetic parameters during in vitro growth and subsequent acclimatization of coconut (Cocos nucifera L.) zygotic embryos. In: Drew RA (ed) Proceedings of the international symposium of biotechnology in tropical and subtropical species, vol 461. Acta Hort. ISHS, Leuven, pp 275–284Google Scholar
  113. Vu TML (2002) Coconut embryo culture in Vietnam. Coconut embryo in vitro culture: Part II. In: Proceedings of second international on embryo culture workshop, Merida, Yucatan, Mexico, 14–17 March 2000. International Plant Genetic Resources Institute (IPGRI), RomeGoogle Scholar
  114. Wadt LHO, Sakiyama NS, Pereira MG et al (1999) RAPD markers in the genetic diversity study of the coconut palm. In: Oropeza C, Verdeil JL, Ashburner GR, Cardena R, Santamaria JM (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 89–97Google Scholar
  115. White PR (1943) A handbook of plant tissue culture. A handbook of plant tissue culture. The Jaques Cattell Press, LancasterGoogle Scholar
  116. Xiao Y, Xu P, Fan H et al (2017) The genome draft of coconut (Cocos nucifera L.). GigaScience 6(11):gix095Google Scholar
  117. Ya-Yi H, Antonius JMM, Marjori M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera L.). PLoS One 8(8):e74736Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julianne Biddle
    • 1
    Email author
  • Quang Nguyen
    • 1
    • 2
  • Zhihua H. Mu
    • 1
  • Mike Foale
    • 1
  • Steve Adkins
    • 1
  1. 1.School of Agriculture and Food ScienceUniversity of QueenslandSt LuciaAustralia
  2. 2.Applied Biotechnology in Crop Development Research Unit, School of BiotechnologyInternational University, Vietnam National University-HCMHo Chi Minh CityVietnam

Personalised recommendations