Electrophysiological Diagnostics in Chiari Malformation

  • Florian RoserEmail author
  • Marina Liebsch
  • Luigi Rigante


Up to 60% of patients with Chiari type 1 malformation harbor a cervical syringomyelia and a centromedullary syndrome with dissociated pain and thermal sensory impairment, followed by segmental weakness, atrophy, upper motor neuron syndrome, and autonomic dysfunctions due to distension of descending pathways. Comprehensive electrophysiological diagnostics with somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), and silent periods help distinguishing between incidental hydromyelia and developing syringomyelia and can provide quantitative parameters for surgical indication in Chiari malformation. Intraoperative neurophysiological monitoring (IOM) can prevent neurological deterioration during positioning and due to microsurgical manipulation for surgeons or institutions with less experience in treating this pathology, in complex or re-exploration cases with scarred medullary junctions or cranio-cervical junction instabilities, and determine the extent of suboccipital decompression.


Chiari Electrodiagnostics Hydromyelia Intraoperative monitoring Motor evoked potential Silent period Somatosensory evoked potential Syringomyelia 


  1. 1.
    Klekamp J. Surgical treatment of Chiari I malformation – analysis of intraoperative findings, complications, and outcome for 371 foramen magnum decompressions. Neurosurgery. 2012;71:365–80; discussion 380.PubMedCrossRefGoogle Scholar
  2. 2.
    Leis AA, Kofler M, Ross MA. The silent period in pure sensory neuronopathy. Muscle Nerve. 1992;15:1345–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Roser F, Ebner FH, Liebsch M, Dietz K, Tatagiba M. A new concept in the electrophysiological evaluation of syringomyelia. J Neurosurg Spine. 2008;8:517–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Sigal R, Denys A, Halimi P, Shapeero L, Doyon D, Boudghene F. Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol. 1991;12:733–7.PubMedGoogle Scholar
  5. 5.
    Roser F, Maier G, Ebner FH, Tatagiba M, Naegele T, Klose U. Fractionated anisotropy (FA-) levels derived from diffusion tensor imaging in cervical syringomyelia. Neurosurgery. 2010;67:901–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine (Phila Pa 1976). 1993;18:737–47.CrossRefGoogle Scholar
  7. 7.
    Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20:122–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Improvement in brainstem auditory evoked potentials after suboccipital decompression in patients with chiari I malformations. J Neurosurg. 2003;98:459–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen JA, Coutin-Churchman PE, Nuwer MR, Lazareff JA. Suboccipital craniotomy for Chiari I results in evoked potential conduction changes. Surg Neurol Int. 2012;3:165.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Gelfan S, Tarlov IM. Interneurones and rigidity of spinal origin. J Physiol. 1959;146:594–617.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Nogues MA, Stalberg E. Electrodiagnostic findings in syringomyelia. Muscle Nerve. 1999;22:1653–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Barker A, Jalinous S, Freeston I. Non-invasive magnetic stimulation of the human motor cortex. Lancet. 1985;1:1106–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Masur H, Klostermann F, Oberwittler C, Papke K. Somatosensory evoked potentials after magnetic stimulation at different points of the body in normal subjects and in patients with syringomyelia. Funct Neurol. 1996;11:253–9.PubMedGoogle Scholar
  16. 16.
    Masur H, Oberwittler C. SEPs and CNS magnetic stimulation in syringomyelia. Muscle Nerve. 1993;16:681–2.PubMedGoogle Scholar
  17. 17.
    Masur H, Oberwittler C, Fahrendorf G, Heyen P, Reuther G, Nedjat S, et al. The relation between functional deficits, motor and sensory conduction times and MRI findings in syringomyelia. Electroencephalogr Clin Neurophysiol. 1992;85:321–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Restuccia D, Mauguiere F. The contribution of median nerve SEPs in the functional assessment of the cervical spinal cord in syringomyelia. A study of 24 patients. Brain. 1991;114(Pt 1B):361–79.PubMedCrossRefGoogle Scholar
  19. 19.
    Jabbari B, Geyer C, Gunderson C, Chu A, Brophy J, McBurney JW, Jonas B. Somatosensory evoked potentials and magnetic resonance imaging in syringomyelia. Electroencephalogr Clin Neurophysiol. 1990;77:277–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Morioka T, Kurita-Tashima S, Fujii K, Nakagaki H, Kato M, Fukui M. Somatosensory and spinal evoked potentials in patients with cervical syringomyelia. Neurosurgery. 1992;30:218–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Stöhr M, Buettner UW, Riffel B, Koletzki E. Spinal somatosensory evoked potentials in cervical cord lesions. Electroencephalogr Clin Neurophysiol. 1982;54:257–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Urasaki E, Wada S, Kadoya C, Matsuzaki H, Yokota A, Matsuoka S. Absence of spinal N13-P13 and normal scalp far-field P14 in a patient with syringomyelia. Electroencephalogr Clin Neurophysiol. 1988;71:400–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Veilleux M, Stevens JC. Syringomyelia: electrophysiologic aspects. Muscle Nerve. 1987;10:449–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Noel P, Desmedt JE. Somatosensory cerebral evoked potentials after vascular lesions of the brain-stem and diencephalon. Brain. 1975;98:113–28.PubMedCrossRefGoogle Scholar
  25. 25.
    Schieppati M, Ducati A. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb. Electroencephalogr Clin Neurophysiol. 1981;51:363–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Iragui VJ. The cervical somatosensory evoked potential in man: far-field, conducted and segmental components. Electroencephalogr Clin Neurophysiol. 1984;57:228–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeanmonod D, Sindou M, Mauguiere F. Intra-operative spinal cord evoked potentials during cervical and lumbo-sacral microsurgical DREZ-tomy (MDT) for chronic pain and spasticity (preliminary data). Acta Neurochir Suppl (Wien). 1989;46:58–61.CrossRefGoogle Scholar
  28. 28.
    Kofler M, Kronenberg MF, Brenneis C, Felber A, Saltuari L. Cutaneous silent periods in intramedullary spinal cord lesions. J Neurol Sci. 2003;216:67–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Forcadas I, Hurtado P, Madoz P, Zarranz JJ. Somatosensory evoked potentials in syringomyelia and the Arnold-Chiari anomaly. Clinical and imaging correlations. Neurologia. 1988;3:172–5.PubMedGoogle Scholar
  30. 30.
    Elster AD, Chen MY. Chiari I malformations: clinical and radiologic reappraisal. Radiology. 1992;183:347–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Hort-Legrand C, Emery E. Evoked motor and sensory potentials in syringomyelia. Neurochirurgie. 1999;45(Suppl 1):95–104.PubMedGoogle Scholar
  32. 32.
    Cristante L, Herrmann HD. Surgical management of intramedullary spinal cord tumors: functional outcome and sources of morbidity. Neurosurgery. 1994;35:69–74; discussion 74–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Emery E, Hort-Legrand C, Hurth M, Metral S. Correlations between clinical deficits, motor and sensory evoked potentials and radiologic aspects of MRI in malformative syringomyelia. 27 Cases. Neurophysiol Clin. 1998;28:56–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Leis AA. Conduction abnormalities detected by silent period testing. Electroencephalogr Clin Neurophysiol. 1994;93:444–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Leis AA. Cutaneous silent period. Muscle Nerve. 1998;21:1243–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Uncini A, Kujirai T, Gluck B, Pullman S. Silent period induced by cutaneous stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:344–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Floeter MK. Cutaneous silent periods. Muscle Nerve. 2003;28:391–401.PubMedCrossRefGoogle Scholar
  38. 38.
    Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–34.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. Cutaneous silent period in syringomyelia. Muscle Nerve. 1997;20:884–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaneko K, Kawai S, Taguchi T, Fuchigami Y, Yonemura H, Fujimoto H. Cortical motor neuron excitability during cutaneous silent period. Electroencephalogr Clin Neurophysiol. 1998;109:364–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Stetkarova I, Kofler M, Leis AA. Cutaneous and mixed nerve silent periods in syringomyelia. Clin Neurophysiol. 2001;112:78–85.PubMedCrossRefGoogle Scholar
  42. 42.
    Alstermark B, Lundberg A, Sasaki S. Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3-C4 propriospinal neurones. Exp Brain Res. 1984;56:279–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Burke D, Gracies JM, Mazavet D, Meunier S, Pierrot-Deseilligny E. Convergence of descending and various peripheral inputs onto common propriospinal-like inputs in man. J Physiol. 1992;449:655–71.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD. Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol. 1992;447:535–48.CrossRefGoogle Scholar
  45. 45.
    Fuhr P. Motor evoked potentials. Physiology, indications, safety aspects. Schweiz Rundsch Med Prax. 1992;81:1489–94.PubMedGoogle Scholar
  46. 46.
    Sindou M, Chávez-Machuca J, Hashish H. Cranio-cervical decompression for Chiari type I-malformation, adding extreme lateral foramen magnum opening and expansile duroplasty with arachnoid preservation. Technique and long-term functional results in 44 consecutive adult cases – comparison with l. Acta Neurochir. 2002;144:1005–19.PubMedGoogle Scholar
  47. 47.
    Fuhr P, Agostino R, Hallett M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:257–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG. Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand. 1995;92:383–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Cantello R. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology. 2002;58:1135; author reply 1135.PubMedCrossRefGoogle Scholar
  50. 50.
    Roick H, von Giesen HJ, Benecke R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res. 1993;94:489–98.PubMedCrossRefGoogle Scholar
  51. 51.
    van Kuijk AA, Pasman JW, Geurts AC, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol. 2005;22:10–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Roser F, Ebner FH, Liebsch M, Tatagiba MS, Naros G. The role of intraoperative neuromonitoring in adults with Chiari I malformation. Clin Neurol Neurosurg. 2016;150:27–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Sala F, Squintani G, Tramontano V, Coppola A, Gerosa M. Intraoperative neurophysiological monitoring during surgery for Chiari malformations. Neurol Sci. 2011;32(Suppl 3):S317–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol. 2012;29:101–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Attenuation of somatosensory evoked potentials during positioning in a patient undergoing suboccipital craniectomy for Chiari I malformation with syringomyelia. J Child Neurol. 2001;16:936–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Durham SR, Fjeld-Olenec K. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in pediatric patients: a meta-analysis. J Neurosurg Pediatr. 2008;2:42–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Haroun RI, Guarnieri M, Meadow JJ, Kraut M, Carson BS. Current opinions for the treatment of syringomyelia and chiari malformations: survey of the Pediatric Section of the American Association of Neurological Surgeons. Pediatr Neurosurg. 2000;33:311–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Schijman E, Steinbok P. International survey on the management of Chiari I malformation and syringomyelia. Childs Nerv Syst. 2004;20:341–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Danto J, Milhorat T, Hertzberg H, Bolognese P, Conlon J, Korn A. The neurophysiological intraoperative monitoring of Chiari malformation surgery. Riv Med. 2006;12:51–4.Google Scholar
  60. 60.
    Deinsberger W, Christophis P, Jödicke A, Heesen M, Böker DK. Somatosensory evoked potential monitoring during positioning of the patient for posterior fossa surgery in the semisitting position. Neurosurgery. 1998;43:36–40; discussion 40–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Florian Roser
    • 1
    • 2
    Email author
  • Marina Liebsch
    • 3
  • Luigi Rigante
    • 1
    • 2
  1. 1.Department of NeurosurgeryCleveland Clinic Abu DhabiAbu DhabiUnited Arab Emirates
  2. 2.Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandUSA
  3. 3.Department of NeurosurgeryUniversity Hospital TübingenTübingenGermany

Personalised recommendations