Advertisement

Integrative Omics Analysis of the Effect of Bacteria on the Resistance of Entamoeba histolytica to Oxidative Stress

  • Yana Shaulov
  • Serge AnkriEmail author
Conference paper
  • 38 Downloads

Abstract

Entamoeba histolytica, the etiological agent of amebiasis interacts with and feeds on the gut microbiota. Several studies have emphasized the close relationship between E. histolytica and the bacteria and its impact on the parasite’s pathogenesis. In this work we present an integrated omics analysis of the effect of E. coli and other bacteria on the resistance of E. histolytica to oxidative stress.

Keywords

Entamoeba Enterobacterium Stress Intestinal flora Malate dehydrogenase Oxaloacetate Leucine rich repeat proteins 

Abbreviations

GAPDH

Glyceraldehyde-3-phosphate dehydrogenase putative

HKB

Heat killed bacteria

HKBOS

Heat killed bacteria exposed to oxidative stress

LB

Live bacteria

LRR

Leucine rich repeat proteins

MDH

Malate dehydrogenase

OS

Oxidative stress

OX

Oxidized proteins

OX-RAC

Resin assisted capture of oxidized proteins

NS

Nitrosative stress

Notes

Acknowledgements and Funding

We would like to acknowledge the assistance of Ms. Shruti Nagaraja in the preparation of Fig. 3.1.

This study was supported by grants from the Israel Science Foundation (260/16), the US-Israel Binational Science Foundation (2015211), the Niedersachsen-Israel ZN3454 program and the European ERA-NET Infect-ERA program AMOEBAC (Israel Ministry of Health Grant 031L000).

References

  1. Bansal, D., Sehgal, R., Chawla, Y., Mahajan, R. C., & Malla, N. (2004). In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar. Annals of Clinical Microbiology and Antimicrobials, 3, 27.  https://doi.org/10.1186/1476-0711-3-27.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhattacharya, A., Ghildyal, R., Prasad, J., Bhattacharya, S., & Diamond, L. S. (1992). Modulation of a surface antigen of Entamoeba histolytica in response to bacteria. Infection and Immunity, 60(4), 1711–1713.CrossRefGoogle Scholar
  3. Bracha, R., Kobiler, D., & Mirelman, D. (1982). Attachment and ingestion of bacteria by trophozoites of Entamoeba histolytica. Infection and Immunity, 36(1), 396–406.CrossRefGoogle Scholar
  4. Bracha, R., & Mirelman, D. (1984). Virulence of Entamoeba histolytica trophozoites. Effects of bacteria, microaerobic conditions, and metronidazole. Journal of Experimental Medicine, 160(2), 353–368.Google Scholar
  5. Ehrenkaufer, G. M., Haque, R., Hackney, J. A., Eichinger, D. J., & Singh, U. (2007). Identification of developmentally regulated genes in Entamoeba histolytica: Insights into mechanisms of stage conversion in a protozoan parasite. Cellular Microbiology, 9(6), 1426–1444.  https://doi.org/10.1111/j.1462-5822.2006.00882.x.CrossRefPubMedGoogle Scholar
  6. Gilchrist, C. A., Petri, S. E., Schneider, B. N., Reichman, D. J., Jiang, N., Begum, S., … Petri, W. A., Jr. (2016). Role of the gut microbiota of children in diarrhea due to the protozoan parasite Entamoeba histolytica. The Journal of Infectious Diseases, 213(10), 1579–1585.  https://doi.org/10.1093/infdis/jiv772 (jiv772 [pii]).
  7. Hernandez Ceruelos, A., Romero-Quezada, L. C., Ruvalcaba Ledezma, J. C., & Lopez Contreras, L. (2019). Therapeutic uses of metronidazole and its side effects: An update. European Review for Medical and Pharmacological Sciences, 23(1), 397–401.  https://doi.org/10.26355/eurrev_201901_16788.CrossRefPubMedGoogle Scholar
  8. Hertzberger, R., Arents, J., Dekker, H. L., Pridmore, R. D., Gysler, C., Kleerebezem, M., et al. (2014). H(2)O(2) production in species of the Lactobacillus acidophilus group: A central role for a novel NADH-dependent flavin reductase. Applied and Environment Microbiology, 80(7), 2229–2239.  https://doi.org/10.1128/AEM.04272-13.CrossRefGoogle Scholar
  9. Hinshaw, D. B., Miller, M. T., Omann, G. M., Beals, T. F., & Hyslop, P. A. (1993). A cellular model of oxidant-mediated neuronal injury. Brain Research, 615(1), 13–26.  https://doi.org/10.1016/0006-8993(93)91110-e.CrossRefPubMedGoogle Scholar
  10. Iyer, L. R., Verma, A. K., Paul, J., & Bhattacharya, A. (2019). Phagocytosis of gut bacteria by Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 9, 34.  https://doi.org/10.3389/fcimb.2019.00034.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jeelani, G., & Nozaki, T. (2016). Entamoeba thiol-based redox metabolism: A potential target for drug development. Molecular and Biochemical Parasitology, 206(1–2), 39–45.  https://doi.org/10.1016/j.molbiopara.2016.01.004.CrossRefPubMedGoogle Scholar
  12. Jung, T., Hohn, A., & Grune, T. (2014). The proteasome and the degradation of oxidized proteins: Part II—Protein oxidation and proteasomal degradation. Redox Biology, 2, 99–104.  https://doi.org/10.1016/j.redox.2013.12.008.CrossRefPubMedGoogle Scholar
  13. Kim, J. G., Park, S. J., Sinninghe Damste, J. S., Schouten, S., Rijpstra, W. I., Jung, M. Y., et al. (2016). Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7888–7893.  https://doi.org/10.1073/pnas.1605501113.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lofmark, S., Edlund, C., & Nord, C. E. (2010). Metronidazole is still the drug of choice for treatment of anaerobic infections. Clinical Infectious Diseases, 50(Suppl 1), S16–S23.  https://doi.org/10.1086/647939.CrossRefPubMedGoogle Scholar
  15. Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radical Biology and Medicine, 66, 75–87.  https://doi.org/10.1016/j.freeradbiomed.2013.07.036.CrossRefPubMedGoogle Scholar
  16. Marie, C., & Petri, W. A., Jr. (2014). Regulation of virulence of Entamoeba histolytica. Annual Review of Microbiology, 68, 493–520.  https://doi.org/10.1146/annurev-micro-091313-103550.CrossRefPubMedGoogle Scholar
  17. Mendoza-Macias, C. L., Barrios-Ceballos, M. P., de la Pena, L. P., Rangel-Serrano, A., Anaya-Velazquez, F., Mirelman, D., et al. (2009). Entamoeba histolytica: Effect on virulence, growth and gene expression in response to monoxenic culture with Escherichia coli 055. Experimental Parasitology, 121(2), 167–174.  https://doi.org/10.1016/j.exppara.2008.10.011.CrossRefPubMedGoogle Scholar
  18. Nagaraja, S., & Ankri, S. (2018). Utilization of different omic approaches to unravel stress response mechanisms in the parasite Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 8, 19.  https://doi.org/10.3389/fcimb.2018.00019.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nirujogi, R. S., Muthusamy, B., Kim, M. S., Sathe, G. J., Lakshmi, P. T., Kovbasnjuk, O. N., … Jabbour, R. E. (2017). Secretome analysis of diarrhea-inducing strains of Escherichia coli. Proteomics, 17(6).  https://doi.org/10.1002/pmic.201600299.
  20. Paniagua, G. L., Monroy, E., Garcia-Gonzalez, O., Alonso, J., Negrete, E., & Vaca, S. (2007). Two or more enteropathogens are associated with diarrhoea in Mexican children. Annals of Clinical Microbiology and Antimicrobials, 6, 17.  https://doi.org/10.1186/1476-0711-6-17.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Santi-Rocca, J., Smith, S., Weber, C., Pineda, E., Hon, C. C., Saavedra, E., et al. (2012). Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS ONE, 7(2), e31777.  https://doi.org/10.1371/journal.pone.0031777.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sawa, A., Khan, A. A., Hester, L. D., & Snyder, S. H. (1997). Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death. Proceedings of the National Academy of Sciences of the United States of America, 94(21), 11669–11674.  https://doi.org/10.1073/pnas.94.21.11669.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Scher, J. U., Sczesnak, A., Longman, R. S., Segata, N., Ubeda, C., Bielski, C., … Littman, D. R. (2013). Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife, 2, e01202.  https://doi.org/10.7554/eLife.01202.
  24. Schweighoffer, E., Nys, J., Vanes, L., Smithers, N., & Tybulewicz, V. L. J. (2017). TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. Journal of Experimental Medicine, 214(5), 1269–1280.  https://doi.org/10.1084/jem.20161117.CrossRefPubMedGoogle Scholar
  25. Shahi, P., Trebicz-Geffen, M., Nagaraja, S., Alterzon-Baumel, S., Hertz, R., Methling, K., … Ankri, S. (2016). Proteomic identification of oxidized proteins in Entamoeba histolytica by resin-assisted capture: Insights into the role of arginase in resistance to oxidative stress. PLoS Neglected Tropical Diseases, 10(1), e0004340.  https://doi.org/10.1371/journal.pntd.0004340.
  26. Sharma, A. (2010). Virulence mechanisms of Tannerella forsythia. Periodontology 2000, 54, 106–116.Google Scholar
  27. Sharma, A., Sojar, H. T., Glurich, I., Honma, K., Kuramitsu, H. K., & Genco, R. J. (1998). Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infection and immunity, 66, 5703–5710. Google Scholar
  28. Shaulov, Y., Shimokawa, C., Trebicz-Geffen, M., Nagaraja, S., Methling, K., Lalk, M., … Ankri, S. (2018). Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathogens, 14(10), e1007295.  https://doi.org/10.1371/journal.ppat.1007295.
  29. Shenton, D., Smirnova, J. B., Selley, J. N., Carroll, K., Hubbard, S. J., Pavitt, G. D., … Grant, C. M. (2006). Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. Journal of Biological Chemistry, 281(39), 29011–29021.  https://doi.org/10.1074/jbc.M601545200.
  30. Silvestre, A., Plaze, A., Berthon, P., Thibeaux, R., Guillen, N., & Labruyere, E. (2015). In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. Microbial Cell, 2(7), 235–246.  https://doi.org/10.15698/mic2015.07.214.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Stanley, S. L., Jr., and Reed, S. L. (2001). Microbes and microbial toxins: Paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: Parasite-host interactions. The American Journal of Physiology: Gastrointestinal and Liver Physiology, 280(6), G1049–G1054.  https://doi.org/10.1152/ajpgi.2001.280.6.g1049.
  32. Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., et al. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129–2141.  https://doi.org/10.1101/gr.772403.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Turkeltaub, J. A., McCarty, T. R., & Hotez, P. J. (2015). The intestinal protozoa: Emerging impact on global health and development. Current Opinion in Gastroenterology, 31(1), 38–44.  https://doi.org/10.1097/MOG.0000000000000135.CrossRefPubMedGoogle Scholar
  34. Valen, G., Sonden, A., Vaage, J., Malm, E., & Kjellstrom, B. T. (1999). Hydrogen peroxide induces endothelial cell atypia and cytoskeleton depolymerization. Free Radical Biology and Medicine, 26(11–12), 1480–1488.  https://doi.org/10.1016/s0891-5849(99)00009-x.CrossRefPubMedGoogle Scholar
  35. Varet, H., Shaulov, Y., Sismeiro, O., Trebicz-Geffen, M., Legendre, R., Coppee, J. Y., et al. (2018). Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Scientific Reports, 8(1), 9042.  https://doi.org/10.1038/s41598-018-27086-w.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vaure, C., & Liu, Y. (2014). A comparative review of toll-like receptor 4 expression and functionality in different animal species. Frontiers in immunology, 5, 316.Google Scholar
  37. Verma, A. K., Verma, R., Ahuja, V., and Paul, J. (2012). Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiology, 12, 183.  https://doi.org/10.1186/1471-2180-12-183 (-2180-12-183 [pii]).
  38. Wittner, M., and Rosenbaum, R. M. (1970). Role of bacteria in modifying virulence of Entamoeba histolytica. Studies of amebae from axenic cultures. The American Journal of Tropical Medicine and Hygiene, 19(5), 755–761.  https://doi.org/10.4269/ajtmh.1970.19.755.
  39. Yanai, T., & Okamoto, J. (1952). Relationship between the number of Escherichia coli in stools and the infectivity of rats to Entamoeba histolytica in the experimental infection of the amoebae. Kitasato Archives of Experimental Medicine, 25(1), 67–68.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of MedicineTechnionHaifaIsrael

Personalised recommendations