Advertisement

Chemical Explosive Mode Analysis for Diagnostics of Direct Numerical Simulations

  • Chun Sang Yoo
  • Tianfeng LuEmail author
  • Jacqueline H. Chen
Chapter
  • 173 Downloads

Abstract

Direct numerical simulation (DNS) has become an important tool to predict and understand complex structures and behaviors of turbulent flames over the last two decades, enabled by the rapid growth of supercomputer power and development of more efficient and accurate Navier–Stokes equation solvers [1]. To predict the strongly nonlinear chemical kinetic processes and their interactions with the flow, detailed chemistry is typically employed in DNS while the computational cost is high even after aggressive mechanism reduction [2]. DNS on today’s supercomputer is capable to generate massive datasets, say tens or hundreds of terabytes, even in cleaned forms, such that systematic computational diagnostic tools need to be developed to extract salient information from the massive raw data. Canonical diagnostic methods based on individual scalars, such as temperature or a species concentration and their combinations (e.g., progress variable and mixture fraction) have been widely employed in previous studies. However, the use of such scalars typically requires semi-empirical criteria that need to be adjusted for different flame types and conditions, rendering them difficult to be automated for the processing of large flame data. Tools universally applicable to different flames and suitable for DNS data diagnostics are scarce and need to be developed. To address this need, a method of chemical explosive mode analysis (CEMA) was recently developed to systematically detect critical flame features for general reacting flows, particularly when local ignition, extinction, and premixed flame fronts are involved [3, 4, 5, 6]. CEMA has been demonstrated in elementary reactors, laminar flames and a variety of turbulent flames [3, 4, 5, 6, 7, 8, 9]. It was found that CEMA-based criteria are rather robust and reliable for limit phenomena detection for both premixed and partially premixed flames, and the use of CEMA in computational diagnostics of different types of flames is discussed in the present chapter.

References

  1. 1.
    J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki et al., Comput. Sci. Discov. 2(1), 015001 (2009)CrossRefGoogle Scholar
  2. 2.
    T. Lu, C.K. Law, Prog. Energy Combust. Sci. 35(2), 192 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Lu, C. Yoo, J. Chen, C.K. Law, J. Fluid Mech. 652, 45 (2010)CrossRefGoogle Scholar
  4. 4.
    Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, T. Lu, Combust. Flame 159(1), 265 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Shan, C.S. Yoo, J.H. Chen, T. Lu, Combust. Flame 159(10), 3119 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Xu, J.W. Park, C.S. Yoo, J.H. Chen, T. Lu, Proc. Combust. Inst. 37(2), 2407 (2019)CrossRefGoogle Scholar
  7. 7.
    M.B. Luong, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 161(11), 2878 (2014)CrossRefGoogle Scholar
  8. 8.
    C.S. Yoo, E.S. Richardson, R. Sankaran, J.H. Chen, Proc. Combust. Inst. 33(1), 1619 (2011)CrossRefGoogle Scholar
  9. 9.
    C.S. Yoo, Z. Luo, T. Lu, H. Kim, J.H. Chen, Proc. Combust. Inst. 34(2), 2985 (2013)CrossRefGoogle Scholar
  10. 10.
    C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2010)Google Scholar
  11. 11.
    J.E. Dec, Proc. Combust. Inst. 32(2), 2727 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Yao, Z. Zheng, H. Liu, Prog. Energy Combust. Sci. 35(5), 398 (2009)CrossRefGoogle Scholar
  13. 13.
    J.E. Dec, Encyclopedia of Automotive Engineering (2014), pp. 1–40Google Scholar
  14. 14.
    M.B. Luong, Z. Luo, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 160(10), 2038 (2013)CrossRefGoogle Scholar
  15. 15.
    C.S. Yoo, T. Lu, J.H. Chen, C.K. Law, Combust. Flame 158(9), 1727 (2011)CrossRefGoogle Scholar
  16. 16.
    S.O. Kim, M.B. Luong, J.H. Chen, C.S. Yoo, Combust. Flame 162(3), 717 (2015)CrossRefGoogle Scholar
  17. 17.
    M.B. Luong, G.H. Yu, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 162(12), 4566 (2015)CrossRefGoogle Scholar
  18. 18.
    M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3587 (2017)CrossRefGoogle Scholar
  19. 19.
    M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3623 (2017)CrossRefGoogle Scholar
  20. 20.
    G.H. Yu, M.B. Luong, S.H. Chung, C.S. Yoo, Combust. Flame 208, 299 (2019)CrossRefGoogle Scholar
  21. 21.
    A. Bhagatwala, J.H. Chen, T. Lu, Combust. Flame 161(7), 1826 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Bhagatwala, R. Sankaran, S. Kokjohn, J.H. Chen, Combust. Flame 162(9), 3412 (2015)CrossRefGoogle Scholar
  23. 23.
    C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Appl. Numer. Math. 35(3), 177 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C.A. Kennedy, M.H. Carpenter, Appl. Numer. Math. 14(4), 397 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-iii: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical report (Sandia National Labs., Livermore, 1996)Google Scholar
  26. 26.
    R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, Sandia National Laboratories Report SAND86-8246 13, 80401 (1986)Google Scholar
  27. 27.
    T. Lu, C.K. Law, Combust. Flame 148(3), 117 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Lu, C.K. Law, Combust. Flame 154(1–2), 153 (2008)CrossRefGoogle Scholar
  29. 29.
    T. Lu, C.K. Law, C.S. Yoo, J.H. Chen, Combust. Flame 156(8), 1542 (2009)CrossRefGoogle Scholar
  30. 30.
    K.M. Lyons, Prog. Energy Combust. Sci. 33(2), 211 (2007)CrossRefGoogle Scholar
  31. 31.
    C.S. Yoo, R. Sankaran, J. Chen, J. Fluid Mech. 640, 453 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Chung, Proc. Combust. Inst. 31(1), 877 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(9), 3437 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(12), 4471 (2015)CrossRefGoogle Scholar
  35. 35.
    K.S. Jung, S.O. Kim, T. Lu, S.H. Chung, B.J. Lee, C.S. Yoo, Combust. Flame 198, 305 (2018)CrossRefGoogle Scholar
  36. 36.
    R. Grout, A. Gruber, H. Kolla, P.T. Bremer, J. Bennett, A. Gyulassy, J. Chen, J. Fluid Mech. 706, 351 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 159(8), 2755 (2012)CrossRefGoogle Scholar
  38. 38.
    Y. Minamoto, H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 162(10), 3569 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T.C. Lieuwen, J.H. Chen, Combust. Flame 162(4), 1234 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, J.H. Chen, Proc. Combust. Inst. 37(2), 2635 (2019)CrossRefGoogle Scholar
  41. 41.
    C. Fureby, K. Nordin-Bates, K. Petterson, A. Bresson, V. Sabelnikov, Proc. Combust. Inst. 35(2), 2127 (2015)CrossRefGoogle Scholar
  42. 42.
    I.A. Dodoulas, S. Navarro-Martinez, Combust. Theor. Model. 19(1), 107 (2015)CrossRefGoogle Scholar
  43. 43.
    K. Nordin-Bates, C. Fureby, S. Karl, K. Hannemann, Proc. Combust. Inst. 36(2), 2893 (2017)CrossRefGoogle Scholar
  44. 44.
    L. Cifuentes, E. Fooladgar, C. Duwig, Fuel 232, 712 (2018)CrossRefGoogle Scholar
  45. 45.
    H. Wei, W. Zhao, Z. Lu, L. Zhou, Fuel 241, 786 (2019)CrossRefGoogle Scholar
  46. 46.
    W. Wu, Y. Piao, Q. Xie, Z. Ren, AIAA J. 57(4), 1355 (2019)CrossRefGoogle Scholar
  47. 47.
    J. An, Y. Jiang, M. Ye, R. Qiu, Int. J. Hydrog. Energy 38(18), 7528 (2013)CrossRefGoogle Scholar
  48. 48.
    L. Wang, Y. Jiang, R. Qiu, Energy Fuels 31(9), 9939 (2017)CrossRefGoogle Scholar
  49. 49.
    C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren, T. Lu, Combust. Flame 195, 30 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chun Sang Yoo
    • 1
  • Tianfeng Lu
    • 2
    Email author
  • Jacqueline H. Chen
    • 3
  1. 1.Department of Mechanical EngineeringUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
  2. 2.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Combustion Research Facility, Sandia National LaboratoriesLivermoreUSA

Personalised recommendations