Noninvasive Vascular Testing

  • Marie Gerhard-HermanEmail author
  • Aaron Aday


The goal of vascular testing is to characterize vessel structure and function. In many cases, a comprehensive history and physical examination are sufficient to make a dignosis (McDermott, Circ Res 116(9):1540–1550, 2015). However, in instances when more information is necessary, the history and physical will direct appropriate diagnostic testing. The modality is chosen according to the needs of a particular patient as well as availability and local expertise. Modalities include physiologic testing, ultrasound (US), computed tomography (CT) and magnetic resonance (MR) imaging (Table 1.1). Specific uses of these methods are discussed further in the disease specific sections of this text. These noninvasive methods are distinct from invasive angiography, where intervention can be performed at the time of diagnosis.


Waveform Ultrasound Physiologic testing Magnetic resonance Computed tomography Angiography 


  1. 1.
    Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American college of cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2017;135(12):e686–725.PubMedGoogle Scholar
  2. 2.
    Aboyans V, Ricco JB, Bartelink MLEL, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2017;39:763–816.Google Scholar
  3. 3.
    Blake DF, Young DA, Brown LH. Transcutaneous oximetry: normal values for the lower limb. Diving Hyperb Med. 2014;44:146–53.PubMedGoogle Scholar
  4. 4.
    Kovacs D, Csiszar B, Biro K, Koltai K, Endrei D, Juricskay I, et al. Toe-brachial index and exercise test can improve the exploration of peripheral artery disease. Atherosclerosis. 2018;269:151–8.CrossRefGoogle Scholar
  5. 5.
    Kremkau FW. Principles of spectral Doppler. J Vasc Ultrasound [Internet]. 2011;35(4):15.
  6. 6.
    Abreu I, Roriz D, Barros M, Moreira A, Caseiro AF. B-mode ultrasound artifacts. Eur Soc Radiol [Internet]. 2015;1–48.
  7. 7.
    Bounameaux H, Perrier A, Righini M. Diagnosis of venous thromboembolism: an update. Vasc Med. 2010;15:399–406.CrossRefGoogle Scholar
  8. 8.
    Nitz WR, Balzer T, Grosu DS, Allkemper T. Principles of magnetic resonance. In: Clinical MR imaging (3rd Edition): a practical approach; 2010.Google Scholar
  9. 9.
    Xin Liu, Zhaoyang Fan, Na Zhang, Qi Yang, Fei Feng, Pengcheng Liu, Hairong Zheng, Debiao Li. Unenhanced MR Angiography of the Foot: Initial Experience of Using Flow-Sensitive Dephasing–prepared Steady-State Free Precession in Patients with Diabetes. Radiology. 2014;272(3):885–94.Google Scholar
  10. 10.
    Christensen S, Calamante F, Hjort N, Wu O, Blankholm AD, Desmond P, et al. Inferring origin of vascular supply from tracer arrival timing patterns using bolus tracking MRI. J Magn Reson Imaging. 2008;27(6):1371–81.CrossRefGoogle Scholar
  11. 11.
    Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med. 2005;54(6):1377–86.CrossRefGoogle Scholar
  12. 12.
    Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging. 2002;15(1):62–7.CrossRefGoogle Scholar
  13. 13.
    Czum JM, Corse WR, Ho VB. MR angiography of the thoracic aorta. Magn Reson Imaging Clin N Am. 2005;13(1):41–64.CrossRefGoogle Scholar
  14. 14.
    Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51(13):R29–43.CrossRefGoogle Scholar
  15. 15.
    Kapoor BS, Esparaz A, Levitin A, McLennan G, Moon E, Sands M. Nonvascular and portal vein applications of cone-beam computed tomography: current status. Tech Vasc Interv Radiol. 2013;16(3):150–60.CrossRefGoogle Scholar
  16. 16.
    Rajiah P. CT and MRI in the evaluation of thoracic aortic diseases. Int J Vasc Med. 2013;Google Scholar
  17. 17.
    Chiles C, Carr JJ. Vascular diseases of the thorax: evaluation with multidetector CT. Radiol Clin N Am. 2005;43(3):543–69.CrossRefGoogle Scholar
  18. 18.
    Albrecht MH, Bickford MW, Nance JW, Zhang L, De Cecco CN, Wichmann JL, et al. State-of-the-art pulmonary CT angiography for acute pulmonary embolism. Am J Roentgenol. 2017;208:495–504.CrossRefGoogle Scholar
  19. 19.
    Wu W, Chaer RA. Nonarteriosclerotic vascular disease. Surg Clin N Am. 2013;93(4):833–75.CrossRefGoogle Scholar
  20. 20.
    Southerland AM, Meschia JF, Worrall BB. Shared associations of nonatherosclerotic, large-vessel, cerebrovascular arteriopathies: considering intracranial aneurysms, cervical artery dissection, moyamoya disease and fibromuscular dysplasia. Curr Opin Neurol. 2013;26(1):13–28.CrossRefGoogle Scholar
  21. 21.
    Bossuyt X, Cohen Tervaert JW, Arimura Y, Blockmans D, Flores-Suáez LF, Guillevin L, et al. Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol. 2017;13(11):683–92.CrossRefGoogle Scholar
  22. 22.
    Luqmani RA. Disease assessment in systemic vasculitis. Nephrol Dial Transpl. 2015;30:i76–82.Google Scholar
  23. 23.
    Germanò G, Monti S, Ponte C, Possemato N, Caporali R, Salvarani C, et al. The role of ultrasound in the diagnosis and follow-up of large-vessel vasculitis: an update. Clin Exp Rheumatol. 2017;35:194–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Brigham and Women’s HospitalHarvard UniversityBostonUSA
  2. 2.Vanderbilt University Medical CenterNashvilleUSA

Personalised recommendations