Advertisement

Ligninase in Degradation of Lignocellulosic Wastes

  • Aparna B. GunjalEmail author
  • Neha N. Patil
  • Sonali S. Shinde
Chapter
  • 22 Downloads

Abstract

Agro-industrial waste industries are the largest polluting industries in the world with the potential application of biofuels or biosources. From the past several years, the worldwide economic and environmental pollution issues have been escalating research interest in the value of biosourced lignocellulosic biomass. The limited resource of fossil fuels and the rapid increase in energy demand has placed immense on the environment. Microbes are known to produce lignin modifying enzymes with high activity and specificity. Four enzymes namely lignin peroxidase, manganese peroxidase, versatile peroxidase, and Laccase are effective in lignin degradation. Dye decoloration is also reported activity together with it. Several fungal and bacterial species are discussed that may enhance production or lignin degradation. This chapter provides a general overview of the suitability of lignin-modifying enzymes used for different agro-industrial wastes and also deals with the use of these enzymes in the development of economic biocatalysts that are more sustainable. This may reduce harmful environmental impacts and improve the applications of enzymatic technology in the industry.

Keywords

White-rot fungi Laccasse Lignin peroxidases Manganese peroxidases Recalcitrant chemicals 

References

  1. Agrawal K, Bhardwaj N, Kumar B et al (2019) Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 15:1042–1055CrossRefGoogle Scholar
  2. Agrawal N, Verma P, Shahi S (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Biores Biopro 5:11CrossRefGoogle Scholar
  3. Ander P, Mishra C, Farrell R, Eriksson K (1990) Redox reactions in lignin degradation: Interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase. J Biotechnol 13:189–198CrossRefGoogle Scholar
  4. Archibald F (1992) A new assay for lignin-type peroxidases employing the dye Azure B. Appl Environ Microbiol 58:3110–3116CrossRefGoogle Scholar
  5. Ardon O, Kerem Z, Hadar Y (1998) Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Can J Microbiol 44:676–680CrossRefGoogle Scholar
  6. Arora D, Gill P (2001) Comparison of two assay procedures for lignin peroxidase. Enzyme Microb Technol 28:602–605CrossRefGoogle Scholar
  7. Baunsgaard L, Dalboge H, Houen G et al (1993) Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase: a new family of fungal peroxidases. Eur J Biochem 1(213):605–611CrossRefGoogle Scholar
  8. Bechem E, Etaka S (2018) Screening of fungi isolated from household waste materials for ligninase activity. Int J Curr Res Biosci Plant Biol 5:1–28CrossRefGoogle Scholar
  9. Boruah P, Sarmah P, Das P, Goswami T (2019) Exploring the lignolytic potential of a new laccase producing strain Kocuria sp. PBS-1 and its application in bamboo pulp bleaching. Int Biodeterior Biodegrad 143:104726Google Scholar
  10. Brink D, Ravi K, Lidén G, Gorwa-Grauslund M (2019) Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 103:3979–4002CrossRefGoogle Scholar
  11. Butler M, Day A (1998) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int J Plant Sci 159:989–995CrossRefGoogle Scholar
  12. Canales M, Lobos S, Vicuna R (1998) Molecular modeling of manganese peroxidase from the lignin-degrading fungus Cerioporiopsis subvermispora and structural comparison with other peroxidases. Electron J Biotechnol 1:25–96CrossRefGoogle Scholar
  13. Chen M, Yao S, Zhang H, Liang X (2010) Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii. Chinese J Chem Eng 18:824–829CrossRefGoogle Scholar
  14. Cheng Z, Xiang-hua W, Ping N (2013) Continuous acid blue 45 decolorization by using a novel open fungal reactor system with ozone as the bactericide. Biochem Eng J 79:246–252CrossRefGoogle Scholar
  15. Collins P, Field J, Teunissen P, Dobson A (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microbiol 63:2543–2548CrossRefGoogle Scholar
  16. da Silva B, Gomes Correa R, Kato C et al (2016) Characterization of a solvent-tolerant manganese peroxidase from Pleurotus pulmonarius and its application in dye decolorization. Curr Biotechnol 6:318–324Google Scholar
  17. Dandare S, Young J, Kelleher B, Allen C (2019) The distribution of novel bacterial laccases in alpine paleosols is directly related to soil stratigraphy. Sci Total Environ 671:19–27CrossRefGoogle Scholar
  18. Dosoretz C, Chen H, Grethlein H (1990) Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:395–400CrossRefGoogle Scholar
  19. Eggert C, Temp U, Dean J, Eriksson K (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148CrossRefGoogle Scholar
  20. Feng N, Guo L, Ren H et al (2019) Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator. Int J Biol Macromol 122:210–215CrossRefGoogle Scholar
  21. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737CrossRefGoogle Scholar
  22. Gaskell J, Dieperink E, Cullen D (1991) Genomic organization of lignin peroxidase genes of Phanerochaete chrysosporium. Nucleic Acids Res 19:599–603CrossRefGoogle Scholar
  23. Glumoff T, Harvey J, Molinari S et al (1990) Lignin peroxidase from Phanerochaete-chrysosporium molecular and kinetic characterization of isozymes. Eur J Biochem 187:515–520CrossRefGoogle Scholar
  24. Godfrey B, Mayfield M, Brown J, Gold M (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119–124CrossRefGoogle Scholar
  25. Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8:250–271Google Scholar
  26. Hatakka A, Lundell T, Hofrichter M, Maijala P (2003) Manganese peroxidase and its role in the degradation of wood lignin. ACS Symp Series 855:230–243CrossRefGoogle Scholar
  27. Herzog V, Fahimi H (1973) A new sensitive colorimetric assay for peroxidase using 3,3′-diaminobenzidine as hydrogen donor. Anal Biochem 55:554–562CrossRefGoogle Scholar
  28. Hilden K, Martinez A, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419CrossRefGoogle Scholar
  29. Hilden K, Makela M, Hakala T et al (2006) Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata. Curr Genet 49:97–105CrossRefGoogle Scholar
  30. Horisawa S, Inoue A, Yamanaka Y (2019) Direct ethanol production from lignocellulosic materials by mixed culture of wood rot fungi Schizophyllum commune, Bjerkandera adusta, and Fomitopsis palustris. Fermentation 5:1–8CrossRefGoogle Scholar
  31. Huang S, Tzean S, Tsai B, Hsieh H (2009) Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiol 155:424–433CrossRefGoogle Scholar
  32. Irie T, Honda Y, Watanabe T, Kuwahara M (2001) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570CrossRefGoogle Scholar
  33. Jarvinen J, Taskila S, Isomaki R, Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: A comparison between the specific activities of the enzyme from different native producers. AMB Express 2:1–9CrossRefGoogle Scholar
  34. Jing D, Wang J (2012) Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. Biotechnol Biofuels 5:1–7CrossRefGoogle Scholar
  35. Johansson T, Welinder K, Nyman P (1993) Isozymes of lignin peroxidase and manganese (II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions. Arch Biochem Biophys 300:57–62CrossRefGoogle Scholar
  36. de Jong E, Field J, de Bont J (1992) Evidence for a new extracellular peroxidase manganese-inhibited peroxidase from the white-rot fungus Bjerkanderasp. BOS 55. FEBS Lett 299:107–110CrossRefGoogle Scholar
  37. Kapich A, Prior B, Botha A et al (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb Technol 34:187–195CrossRefGoogle Scholar
  38. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons B, Blanch H (2010) Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34:1914–1921CrossRefGoogle Scholar
  39. Kuhar F, Castiglia V, Zamora J (2016) Detection of manganese peroxidase and other exoenzymes in four isolates of Geastrum (Geastrales) in pure culture. Rev Argent Microbiol 48:274–278Google Scholar
  40. Leonowicz A, Cho N, Luterek J et al (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227CrossRefGoogle Scholar
  41. Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185CrossRefGoogle Scholar
  42. Lestan D, Strancar A, Perdih A (1990) Influence of some oils and surfactants on ligniolytic activity, growth and lipid fatty acids of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34:426–428Google Scholar
  43. Lewis N, Yamamoto E (1990) Lignin: Occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496CrossRefGoogle Scholar
  44. Linko S (1992) Production of Phanerochaete chrysosporium lignin peroxidase. Biotechnol Adv 40:494–498Google Scholar
  45. Liu J, Zhang S, Shi Q et al (2019) Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase. Int Biodeterior Biodegrad 136:41–48CrossRefGoogle Scholar
  46. Majumdar S, Lukk T, Solbiati J et al (2014) Roles of small laccases from streptomyces in lignin degradation. Biochem 53(24):4047–4058CrossRefGoogle Scholar
  47. Makela M, Marinović M, Nousiainen P et al (2015) Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol 91:63–137CrossRefGoogle Scholar
  48. Martinez D, Larrondo L, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700CrossRefGoogle Scholar
  49. Moreira P, Almeida-Vara E, Malcata F, Duarte J (2007) Lignin transformation by a versatile peroxidase from a novel Bjerkanderasp. strain. Int Biodeterior Biodegrad 59:234–238CrossRefGoogle Scholar
  50. Naidu P, Reddy C (1992) Nucleotide sequence of a new lignin peroxidase gene GLG3 from the white-rot fungus, Phanerochaete chrysosporium. Nucleic Acids Res 20:4124Google Scholar
  51. Nerud F, Misurcova Z (1996) Distribution of ligninolytic enzymes in selected white-rot fungi. Folia Microbiol (Praha) 41:264–266CrossRefGoogle Scholar
  52. Orth A, Rzhetskaya M, Cullen D, Tien M (1994) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase-encoding genes. Gene 148:161–165CrossRefGoogle Scholar
  53. Ozcirak S, Ozturk R (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15:273–277CrossRefGoogle Scholar
  54. Pazarlioglu N, Urek R, Ergun F (2005) Biodecolourization of direct blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem 40:1923–1929CrossRefGoogle Scholar
  55. Pease E, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540CrossRefGoogle Scholar
  56. Perez-Boada M, Ruiz-Dueñas F, Pogni R et al (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402CrossRefGoogle Scholar
  57. Philip R, Kachiprath B, Solomon S, Jayanath G (2019) Mangrove microflora as potential source of hydrolytic enzymes for commercial applications. Ind J Geo-Marine Sci 48:678–684Google Scholar
  58. Pozdnyakova N, Makarov O, Chernyshova M et al (2013) Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol 52:44–53CrossRefGoogle Scholar
  59. Rai R, Bibra M, Chadha B, Sani R (2019) Enhanced hydrolysis of lignocellulosic biomass with doping of a highly thermostable recombinant laccase. Int J Biol Macromol 137:232–237CrossRefGoogle Scholar
  60. Rajan A, Kurup J, Abraham T (2010) Solid state production of manganese peroxidases using arecanut husk as substrate. Brazi Arch Biol Technol 53:555–562CrossRefGoogle Scholar
  61. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249CrossRefGoogle Scholar
  62. Reina R, Kellner H, Hess J et al (2019) Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS OneGoogle Scholar
  63. Ritch T, Gold M (1992) Characterization of a highly expressed lignin peroxidase-encoding gene from the basidiomycete Phanerochaete chrysosporium. Gene 118:73–80CrossRefGoogle Scholar
  64. Ritch T, Nipper V, Akileswaran L et al (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 14:e0212769Google Scholar
  65. Ruiz-Duenas F, Martínez M, Martínez A (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235CrossRefGoogle Scholar
  66. Sawai-Hatanaka H, Ashikari T, Tanaka Y et al (1995) Cloning, sequencing, and Heterologous expression of a gene coding for Arthromyces Ramosus peroxidase. Biosci Biotechnol Biochem 59:1221–1228CrossRefGoogle Scholar
  67. Schuttmann I, Bouws H, Szweda R et al (2014) Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus. J Mol Catal B Enzym 103:79–84CrossRefGoogle Scholar
  68. Sridhar M (2016) Versatile Peroxidases: Super peroxidases with potential biotechnological applications—a mini review. J Dairy Vet Anim Res 4:00116CrossRefGoogle Scholar
  69. Stajich J, Wilke S, Ahrén D et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci 107:11889–11894CrossRefGoogle Scholar
  70. Sundaramoorthy M, Kishi K, Gold M, Poulos T (1994) Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol 238:845–848CrossRefGoogle Scholar
  71. Usha K, Praveen K, Reddy B (2014) Enhanced production of ligninolytic enzymes by a mushroom Stereum ostrea. Biotechnol Res Int 2014:1–9CrossRefGoogle Scholar
  72. Vanholme R, Demedts B, Morreel K et al (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905CrossRefGoogle Scholar
  73. Vazquez M, Cabrera E, Aceves M, Mallol J (2019) Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnol Res Innov 3:177–186CrossRefGoogle Scholar
  74. Venkatadri R, Irvine R (1990) Effect of agitation on ligninase activity and ligninase production of Phanerochaete chrysosporium. Appl Environ Microbiol 56:2684–2691CrossRefGoogle Scholar
  75. Verdín J, Pogni R, Baeza A et al (2006) Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophys Chem 121:163–170CrossRefGoogle Scholar
  76. Walther I, Kalin M, Reiser J et al (1988) Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene 70:127–137CrossRefGoogle Scholar
  77. Wang P, Hu X, Cook S et al (2008) Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J Microbiol Biotechnol 24:2205–2212CrossRefGoogle Scholar
  78. Wang X, Ruckenstein E (1994) Immobilization of Phanerochaete chrysosporium on porous polyurethane particles with application to biodegradation of 2-chlorophenol. Biotechnol Tech 8:339–344CrossRefGoogle Scholar
  79. Whitaker B, Bauer J, Bever J, Clay K (2017) Negative plant-phyllosphere feedbacks in native Asteraceae hosts—a novel extension of the plant-soil feedback framework. Ecol Lett 20:1064–1073CrossRefGoogle Scholar
  80. Wuyep P, Khan A, Nok A (2003) Production and regulation of lignin degrading enzymes from Lentinus squarrosulus (mont.) Singer and Psathyrella atroumbonata Pegler. Afr J Biotechnol 2:444–447CrossRefGoogle Scholar
  81. Xiong X, Wen X, Bai Y, Qian Y (2008) Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air. J Environ Sci 20:94–100CrossRefGoogle Scholar
  82. Yang Y, Song W, Hur H et al (2019) Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. Int J Biol Macromol 124:200–208CrossRefGoogle Scholar
  83. Zhang Y, Reddy C, Rasooly A (1991) Cloning of several lignin peroxidase (LIP)-encoding genes: sequence analysis of the LIP6 gene from the white-rot basidiomycete, Phanerochaete chrysosporium. Gene 97:191–198CrossRefGoogle Scholar
  84. Zhao M, Zhang C, Zeng G et al (2015) Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138:560–567CrossRefGoogle Scholar
  85. Zheng Y, Guo M, Zhou Q, Liu H (2019) Effect of lignin degradation product sinapyl alcohol on laccase catalysis during lignin degradation. Ind Crops Prod 139:1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aparna B. Gunjal
    • 1
    Email author
  • Neha N. Patil
    • 2
  • Sonali S. Shinde
    • 3
  1. 1.Asian Agri Food Consultancy Services LtdPuneIndia
  2. 2.Department of MicrobiologyAnnasaheb Magar MahavidyalayaPuneIndia
  3. 3.Annasaheb Kulkarni Department of BiodiversityMES Abasaheb Garware CollegePuneIndia

Personalised recommendations