Advertisement

Stellate Cells in the Tumor Microenvironment

  • David Roife
  • Bhaswati Sarcar
  • Jason B. FlemingEmail author
Chapter
  • 98 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1263)

Abstract

As tumor microenvironments share many of the same qualities as chronic wounds, attention is turning to the wound-repair cells that support the growth of cancerous cells. Stellate cells are star-shaped cells that were first discovered in the perisinusoidal spaces in the liver and have been found to support wound healing by the secretion of growth factors and extracellular matrix. They have since been also found to serve a similar function in the pancreas. In both organs, the wound-healing process may become dysregulated and lead to pathological fibrosis (also known as cirrhosis in the liver). In recent years there has been increasing attention paid to the role of these cells in tumor formation and progression. They may be a factor in initiating the first steps of carcinogenesis such as with liver cirrhosis and hepatocellular carcinoma and also contribute to continued tumor growth, invasion, metastasis, evasion of the immune system, and resistance to chemotherapy, in cancers of both the liver and pancreas. In this chapter we aim to review the structure and function of hepatic and pancreatic stellate cells and their contributions to the tumor microenvironment in their respective cancers and also discuss potential new targets for cancer therapy based on our new understanding of these vital components of the tumor stroma.

Keywords

Hepatic stellate cell Pancreatic stellate cell Cirrhosis Fibrosis Hepatocellular carcinoma Pancreatic adenocarcinoma Metastasis Alpha-smooth muscle actin Vitamin A Desmoplasia Epithelial-mesenchymal transition Sonic hedgehog 

References

  1. 1.
    Wake K, Motomatsu K, Senoo H (1987) Stellate cells storing retinol in the liver of adult lamprey, Lampetra japonica. Cell Tissue Res 249(2):289–299CrossRefGoogle Scholar
  2. 2.
    Ito T, Nemoto M (1952) Kupfer’s cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat Jpn 24(4):243–258CrossRefGoogle Scholar
  3. 3.
    Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21(3):311–335.  https://doi.org/10.1055/s-2001-17550CrossRefPubMedGoogle Scholar
  4. 4.
    Blaner WS, O’Byrne SM, Wongsiriroj N et al (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791(6):467–473.  https://doi.org/10.1016/j.bbalip.2008.11.001CrossRefPubMedGoogle Scholar
  5. 5.
    Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492.  https://doi.org/10.1002/cphy.c120035CrossRefPubMedGoogle Scholar
  6. 6.
    Yin C, Evason KJ, Asahina K, Stainier DYR (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 123(5):1902–1910.  https://doi.org/10.1172/JCI66369CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shang L, Hosseini M, Liu X, Kisseleva T, Brenner DA (2018) Human hepatic stellate cell isolation and characterization. J Gastroenterol 53(1):6–17.  https://doi.org/10.1007/s00535-017-1404-4CrossRefPubMedGoogle Scholar
  8. 8.
    Motoyama H, Komiya T, Thuy LTT et al (2014) Cytoglobin is expressed in hepatic stellate cells, but not in myofibroblasts, in normal and fibrotic human liver. Lab Investig 94(2):192–207.  https://doi.org/10.1038/labinvest.2013.135CrossRefPubMedGoogle Scholar
  9. 9.
    Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ (2003) Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Investig 83(5):655.  https://doi.org/10.1097/01.LAB.0000069036.63405.5CCrossRefPubMedGoogle Scholar
  10. 10.
    Rockey DC (2001) Cellular pathophysiology of portal hypertension and prospects for management with gene therapy. Clin Liver Dis 5(3):851–865CrossRefGoogle Scholar
  11. 11.
    Watari N, Hotta Y, Mabuchi Y (1982) Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn 58(4–6):837–858CrossRefGoogle Scholar
  12. 12.
    Apte MV, Haber PS, Applegate TL et al (1998) Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43(1):128–133.  https://doi.org/10.1136/gut.43.1.128CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Apte M, Pirola RC, Wilson JS (2015) Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol 31(5):416–423.  https://doi.org/10.1097/mog.0000000000000196CrossRefPubMedGoogle Scholar
  14. 14.
    Apte MV, Haber PS, Darby SJ et al (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44(4):534–541.  https://doi.org/10.1136/gut.44.4.534CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Apte MV, Park S, Phillips PA et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29(3):179–187CrossRefGoogle Scholar
  16. 16.
    Haber PS, Keogh GW, Apte MV et al (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155(4):1087–1095.  https://doi.org/10.1016/S0002-9440(10)65211-XCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Buchholz M, Kestler HA, Holzmann K et al (2005) Transcriptome analysis of human hepatic and pancreatic stellate cells: organ-specific variations of a common transcriptional phenotype. J Mol Med 83(10):795–805.  https://doi.org/10.1007/s00109-005-0680-2CrossRefPubMedGoogle Scholar
  18. 18.
    Apte MV, Pirola RC, Wilson JS (2012) Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 3:344.  https://doi.org/10.3389/fphys.2012.00344CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Phillips PA, McCarroll JA, Park S et al (2003) Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Gut 52(2):275–282.  https://doi.org/10.1136/gut.52.2.275CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bachem MG, Zhou Z, Zhou S, Siech M (2006) Role of stellate cells in pancreatic fibrogenesis associated with acute and chronic pancreatitis. J Gastroenterol Hepatol 21(s3):S92–S96.  https://doi.org/10.1111/j.1440-1746.2006.04592.xCrossRefPubMedGoogle Scholar
  21. 21.
    Schmitt-Graeff A, Jing R, Nitschke R, Desmoulière A, Skalli O (2006) Synemin expression is widespread in liver fibrosis and is induced in proliferating and malignant biliary epithelial cells. Hum Pathol 37(9):1200–1210.  https://doi.org/10.1016/j.humpath.2006.04.017CrossRefPubMedGoogle Scholar
  22. 22.
    Bachem MG, Meyer D, Melchior R, Sell KM, Gressner AM (1992) Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self perpetuation in liver fibrogenesis. J Clin Invest 89(1):19–27.  https://doi.org/10.1172/JCI115561CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pinzani M, Gentilini A, Caligiuri A et al (1995) Transforming growth factor-β1 regulates platelet-derived growth factor receptor β subunit in human liver fat-storing cells. Hepatology 21(1):232–239.  https://doi.org/10.1002/hep.1840210136CrossRefPubMedGoogle Scholar
  24. 24.
    Mikula M, Proell V, Fischer ANM, Mikulits W (2006) Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 209(2):560–567.  https://doi.org/10.1002/jcp.20772CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129(5):1375–1383.  https://doi.org/10.1053/j.gastro.2005.09.055CrossRefPubMedGoogle Scholar
  26. 26.
    Amann T, Bataille F, Spruss T et al (2009) Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 100(4):646–653.  https://doi.org/10.1111/j.1349-7006.2009.01087.xCrossRefPubMedGoogle Scholar
  27. 27.
    Li X, Li P, Chang Y et al (2014) The SDF-1/CXCR4 axis induces epithelial–mesenchymal transition in hepatocellular carcinoma. Mol Cell Biochem 392(1):77–84.  https://doi.org/10.1007/s11010-014-2020-8CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liepelt A, Tacke F (2016, August) Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol-Gastrointest Liver Physiol.  https://doi.org/10.1152/ajpgi.00193.2016
  29. 29.
    Gentilini A, Rombouts K, Galastri S et al (2012) Role of the stromal-derived factor-1 (SDF-1)–CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol 57(4):813–820.  https://doi.org/10.1016/j.jhep.2012.06.012CrossRefPubMedGoogle Scholar
  30. 30.
    Kordes C, Sawitza I, Müller-Marbach A et al (2007) CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 352(2):410–417.  https://doi.org/10.1016/j.bbrc.2006.11.029CrossRefPubMedGoogle Scholar
  31. 31.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899.  https://doi.org/10.1038/nrc1478CrossRefPubMedGoogle Scholar
  32. 32.
    Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437–447.  https://doi.org/10.1038/nrc1367CrossRefPubMedGoogle Scholar
  33. 33.
    Rosmorduc O, Housset C (2010) Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis 30(3):258–270.  https://doi.org/10.1055/s-0030-1255355CrossRefPubMedGoogle Scholar
  34. 34.
    Lin N, Chen Z, Lu Y, Li Y, Hu K, Xu R (2015) Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol Res 45(3):326–336.  https://doi.org/10.1111/hepr.12356CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang F, Hao M, Jin H et al (2017) Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol 174(5):409–423.  https://doi.org/10.1111/bph.13701CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lu Y, Lin N, Chen Z, Xu R (2015) Hypoxia-induced secretion of platelet-derived growth factor-BB by hepatocellular carcinoma cells increases activated hepatic stellate cell proliferation, migration and expression of vascular endothelial growth factor-A. Mol Med Rep 11(1):691–697.  https://doi.org/10.3892/mmr.2014.2689CrossRefPubMedGoogle Scholar
  37. 37.
    Cho Y, Cho EJ, Lee J-H et al (2016) Hypoxia enhances tumor-stroma crosstalk that drives the progression of hepatocellular carcinoma. Dig Dis Sci 61(9):2568–2577.  https://doi.org/10.1007/s10620-016-4158-6CrossRefPubMedGoogle Scholar
  38. 38.
    Song J, Ge Z, Yang X et al (2015) Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett 356(2 Part B):713–720.  https://doi.org/10.1016/j.canlet.2014.10.021
  39. 39.
    Pinzani M, Abboud HE, Gesualdo L, Abboud SL (1992) Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors. Am J Physiol Cell Physiol 262(4):C876–C881.  https://doi.org/10.1152/ajpcell.1992.262.4.C876CrossRefGoogle Scholar
  40. 40.
    Pinzani M, Carloni V, Marra F, Riccardi D, Laffi G, Gentilini P (1994) Biosynthesis of platelet-activating factor and its 1O-acyl analogue by liver fat-storing cells. Gastroenterology 106(5):1301–1311.  https://doi.org/10.1016/0016-5085(94)90023-XCrossRefPubMedGoogle Scholar
  41. 41.
    Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88(1):125–172.  https://doi.org/10.1152/physrev.00013.2007CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Winau F, Hegasy G, Weiskirchen R et al (2007) Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26(1):117–129.  https://doi.org/10.1016/j.immuni.2006.11.011CrossRefPubMedGoogle Scholar
  43. 43.
    Xu Y, Zhao W, Xu J et al (2016) Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 7(8):8866–8878.  https://doi.org/10.18632/oncotarget.6839
  44. 44.
    Hsieh CC, Hung CH, Lu L, Qian S (2015) Hepatic immune tolerance induced by hepatic stellate cells. World J Gastroenterol 21(42):11887–11892.  https://doi.org/10.3748/wjg.v21.i42.11887CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yu M-C, Chen C-H, Liang X et al (2004) Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatol Baltim MD 40(6):1312–1321.  https://doi.org/10.1002/hep.20488CrossRefGoogle Scholar
  46. 46.
    Cheng A-L, Kang Y-K, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34.  https://doi.org/10.1016/S1470-2045(08)70285-7CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390.  https://doi.org/10.1056/NEJMoa0708857CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Azzariti A, Mancarella S, Porcelli L et al (2016) Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 64(6):2103–2117.  https://doi.org/10.1002/hep.28835CrossRefPubMedGoogle Scholar
  49. 49.
    Song Y, Kim S, Kim KM, Choi EK, Kim J, Seo HR (2016) Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci Rep 6.  https://doi.org/10.1038/srep36750
  50. 50.
    Okabe H, Beppu T, Hayashi H et al (2011) Hepatic stellate cells accelerate the malignant behavior of cholangiocarcinoma cells. Ann Surg Oncol 18(4):1175–1184.  https://doi.org/10.1245/s10434-010-1391-7CrossRefPubMedGoogle Scholar
  51. 51.
    Okabe H, Beppu T, Hayashi H et al (2009) Hepatic stellate cells may relate to progression of intrahepatic Cholangiocarcinoma. Ann Surg Oncol 16(9):2555.  https://doi.org/10.1245/s10434-009-0568-4CrossRefPubMedGoogle Scholar
  52. 52.
    Kim Y, Kim M, Shin JS et al (2014) Hedgehog signaling between Cancer cells and hepatic stellate cells in promoting Cholangiocarcinoma. Ann Surg Oncol 21(8):2684–2698.  https://doi.org/10.1245/s10434-014-3531-yCrossRefPubMedGoogle Scholar
  53. 53.
    Okamoto K, Tajima H, Ohta T et al (2010) Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int J Oncol 37(5):1251–1259.  https://doi.org/10.3892/ijo_00000776CrossRefPubMedGoogle Scholar
  54. 54.
    Okamoto K, Tajima H, Nakanuma S et al (2012) Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. Int J Oncol 41(2):573–582.  https://doi.org/10.3892/ijo.2012.1499CrossRefPubMedGoogle Scholar
  55. 55.
    Hess KR, Varadhachary GR, Taylor SH et al (2006) Metastatic patterns in adenocarcinoma. Cancer 106(7):1624–1633.  https://doi.org/10.1002/cncr.21778CrossRefPubMedGoogle Scholar
  56. 56.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573.  https://doi.org/10.1016/S0140-6736(00)49915-0CrossRefGoogle Scholar
  57. 57.
    Antoine M, Tag CG, Gressner AM, Hellerbrand C, Kiefer P (2009) Expression of E-selectin ligand-1 (CFR/ESL-1) on hepatic stellate cells: implications for leukocyte extravasation and liver metastasis. Oncol Rep 21(2):357–362.  https://doi.org/10.3892/or_00000230CrossRefPubMedGoogle Scholar
  58. 58.
    Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826.  https://doi.org/10.1038/ncb3169CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Grünwald B, Harant V, Schaten S et al (2016) Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151(5):1011–1024.e7.  https://doi.org/10.1053/j.gastro.2016.07.043
  60. 60.
    Lenk L, Pein M, Will O et al (2017) The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Onco Targets Ther 7(1):e1368603.  https://doi.org/10.1080/2162402X.2017.1368603CrossRefGoogle Scholar
  61. 61.
    Meyer T, Koch A, Ebert E-V et al (2017) Effect of melanoma cells on proliferation and migration of activated hepatic stellate cells in vitro. Pathol Res Pract 213(4):400–404.  https://doi.org/10.1016/j.prp.2016.12.014CrossRefPubMedGoogle Scholar
  62. 62.
    Olaso E, Salado C, Egilegor E et al (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatol Baltim MD 37(3):674–685.  https://doi.org/10.1053/jhep.2003.50068CrossRefGoogle Scholar
  63. 63.
    Babchia N, Landreville S, Clément B, Coulouarn C, Mouriaux F (2019) The bidirectional crosstalk between metastatic uveal melanoma cells and hepatic stellate cells engenders an inflammatory microenvironment. Exp Eye Res 181:213–222.  https://doi.org/10.1016/j.exer.2019.02.012CrossRefPubMedGoogle Scholar
  64. 64.
    Matsusue R, Kubo H, Hisamori S et al (2009) Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann Surg Oncol 16(9):2645–2653.  https://doi.org/10.1245/s10434-009-0599-xCrossRefPubMedGoogle Scholar
  65. 65.
    Shimizu S, Yamada N, Sawada T et al (2000) In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res Gann 91(12):1285–1295.  https://doi.org/10.1111/j.1349-7006.2000.tb00916.xCrossRefPubMedGoogle Scholar
  66. 66.
    Nagathihalli NS, Castellanos JA, VanSaun MN et al (2016) Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget 7(40):65982–65992.  https://doi.org/10.18632/oncotarget.11786
  67. 67.
    Erkan M (2013) The role of pancreatic stellate cells in pancreatic cancer. Pancreatology 13(2):106–109.  https://doi.org/10.1016/j.pan.2013.01.008CrossRefPubMedGoogle Scholar
  68. 68.
    Lee ATK, Xu Z, Pothula SP et al (2015) Alcohol and cigarette smoke components activate human pancreatic stellate cells: implications for the progression of chronic pancreatitis. Alcohol Clin Exp Res 39(11):2123–2133.  https://doi.org/10.1111/acer.12882CrossRefPubMedGoogle Scholar
  69. 69.
    Bachem MG, Schünemann M, Ramadani M et al (2005) Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 128(4):907–921CrossRefGoogle Scholar
  70. 70.
    Yoshida S, Ujiki M, Ding X-Z et al (2005) Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer 4:27.  https://doi.org/10.1186/1476-4598-4-27CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Apte MV, Wilson JS, Lugea A, Pandol SJ (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144(6):1210–1219.  https://doi.org/10.1053/j.gastro.2012.11.037CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kikuta K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosegawa T (2013) Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic beta-cells. Biochem Biophys Res Commun 433(3):292–297.  https://doi.org/10.1016/j.bbrc.2013.02.095CrossRefPubMedGoogle Scholar
  73. 73.
    Vonlaufen A, Joshi S, Qu C et al (2008) Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 68(7):2085–2093.  https://doi.org/10.1158/0008-5472.CAN-07-2477CrossRefPubMedGoogle Scholar
  74. 74.
    Hwang RF, Moore T, Arumugam T et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926.  https://doi.org/10.1158/0008-5472.CAN-07-5714CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hwang RF, Moore TT, Hattersley MM et al (2012) Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol Cancer Res MCR 10(9):1147–1157.  https://doi.org/10.1158/1541-7786.MCR-12-0022CrossRefPubMedGoogle Scholar
  76. 76.
    Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN (2008) Lumican, a small leucine-rich proteoglycan. IUBMB Life 60(12):818–823.  https://doi.org/10.1002/iub.131CrossRefPubMedGoogle Scholar
  77. 77.
    Li X, Kang Y, Roife D et al (2017) Prolonged exposure to extracellular lumican restrains pancreatic adenocarcinoma growth. Oncogene 36(38):5432–5438.  https://doi.org/10.1038/onc.2017.125CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Li X, Roife D, Kang Y, Dai B, Pratt M, Fleming JB (2016) Extracellular lumican augments cytotoxicity of chemotherapy in pancreatic ductal adenocarcinoma cells via autophagy inhibition. Oncogene 35(37):4881–4890.  https://doi.org/10.1038/onc.2016.20CrossRefPubMedGoogle Scholar
  79. 79.
    Ikenaga N, Ohuchida K, Mizumoto K et al (2010) CD10+ pancreatic stellate cells enhance the progression of pancreatic cancer. Gastroenterology 139(3):1041–1051.e8.  https://doi.org/10.1053/j.gastro.2010.05.084CrossRefPubMedGoogle Scholar
  80. 80.
    Erkan M, Reiser-Erkan C, Michalski CW et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia N Y N 11(5):497–508CrossRefGoogle Scholar
  81. 81.
    Eguchi D, Ikenaga N, Ohuchida K et al (2013) Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor. J Surg Res 181(2):225–233.  https://doi.org/10.1016/j.jss.2012.06.051CrossRefPubMedGoogle Scholar
  82. 82.
    Endo S, Nakata K, Ohuchida K et al (2017) Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic Cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 152(6):1492–1506. e24.  https://doi.org/10.1053/j.gastro.2017.01.010CrossRefPubMedGoogle Scholar
  83. 83.
    Masamune A, Kikuta K, Watanabe T, Satoh K, Hirota M, Shimosegawa T (2008) Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 295(4):G709–G717.  https://doi.org/10.1152/ajpgi.90356.2008CrossRefPubMedGoogle Scholar
  84. 84.
    Sarcar B, Li X, Fleming JB (2019) Hypoxia-induced autophagy degrades stromal lumican into tumor microenvironment of pancreatic ductal adenocarcinoma: a mini-review. J Cancer Treat Diagn 3(1):22–27.  https://doi.org/10.29245/2578-2967/2019/1.1165
  85. 85.
    Li X, Lee Y, Kang Y et al (2019) Hypoxia-induced autophagy of stellate cells inhibits expression and secretion of lumican into microenvironment of pancreatic ductal adenocarcinoma. Cell Death Differ 26(2):382–393.  https://doi.org/10.1038/s41418-018-0207-3CrossRefPubMedGoogle Scholar
  86. 86.
    Andoh A, Takaya H, Saotome T et al (2000) Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology 119(1):211–219.  https://doi.org/10.1053/gast.2000.8538CrossRefPubMedGoogle Scholar
  87. 87.
    Shek FW-T, Benyon RC, Walker FM et al (2002) Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol 160(5):1787–1798.  https://doi.org/10.1016/s0002-9440(10)61125-xCrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Miller-Ocuin JL, Liang X, Boone BA et al (2019) DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth. Onco Targets Ther 8(9):e1605822.  https://doi.org/10.1080/2162402X.2019.1605822CrossRefGoogle Scholar
  89. 89.
    Tang D, Yuan Z, Xue X et al (2012) High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int J Cancer 130(10):2337–2348.  https://doi.org/10.1002/ijc.26290CrossRefPubMedGoogle Scholar
  90. 90.
    Orozco CA, Martinez-Bosch N, Guerrero PE et al (2018) Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 115(16):E3769–E3778.  https://doi.org/10.1073/pnas.1722434115CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhao W, Ajani JA, Sushovan G et al (2018) Galectin-3 mediates tumor cell–stroma interactions by activating pancreatic stellate cells to produce cytokines via integrin signaling. Gastroenterology 154(5):1524–1537.e6.  https://doi.org/10.1053/j.gastro.2017.12.014
  92. 92.
    Liu SL, Cao SG, Li Y et al (2019) Pancreatic stellate cells facilitate pancreatic cancer cell viability and invasion. Oncol Lett 17(2):2057–2062.  https://doi.org/10.3892/ol.2018.9816CrossRefPubMedGoogle Scholar
  93. 93.
    Zhang H, Wu H, Guan J et al (2015) Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget 6(5):3085–3097.  https://doi.org/10.18632/oncotarget.3099
  94. 94.
    Cao F, Li J, Sun H, Liu S, Cui Y, Li F (2015) HES 1 is essential for chemoresistance induced by stellate cells and is associated with poor prognosis in pancreatic cancer. Oncol Rep 33(4):1883–1889.  https://doi.org/10.3892/or.2015.3789CrossRefPubMedGoogle Scholar
  95. 95.
    Hessmann E, Patzak MS, Klein L et al (2018) Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut 67(3):497–507.  https://doi.org/10.1136/gutjnl-2016-311954CrossRefPubMedGoogle Scholar
  96. 96.
    Liu Y, Li F, Gao F et al (2016) Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer. Tumor Biol 37(11):15283–15291.  https://doi.org/10.1007/s13277-016-5321-6CrossRefGoogle Scholar
  97. 97.
    Erkan M, Kleeff J, Gorbachevski A et al (2007) Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132(4):1447CrossRefGoogle Scholar
  98. 98.
    Mantoni TS, Lunardi S, Al-Assar O, Masamune A, Brunner TB (2011) Pancreatic stellate cells radioprotect pancreatic cancer cells through β1-integrin signaling. Cancer Res 71(10):3453–3458.  https://doi.org/10.1158/0008-5472.CAN-10-1633CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Li Y, Song T, Chen Z, Wang Y, Zhang J, Wang X (2019) Pancreatic stellate cells activation and matrix metallopeptidase 2 expression correlate with lymph node metastasis in pancreatic carcinoma. Am J Med Sci 357(1):16–22.  https://doi.org/10.1016/j.amjms.2018.10.001CrossRefPubMedGoogle Scholar
  100. 100.
    Lu J, Zhou S, Siech M, Habisch H, Seufferlein T, Bachem MG (2014) Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br J Cancer 110(2):409–420.  https://doi.org/10.1038/bjc.2013.706CrossRefPubMedGoogle Scholar
  101. 101.
    Yang XP, Liu SL, Xu JF, Cao SG, Li Y, Zhou YB (2017) Pancreatic stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor/c-Met/survivin regulated by P53/P21. Exp Cell Res 357(1):79–87.  https://doi.org/10.1016/j.yexcr.2017.04.027CrossRefPubMedGoogle Scholar
  102. 102.
    Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY (2017) Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Biophys Acta Gen Subj 1861(2):296–306.  https://doi.org/10.1016/j.bbagen.2016.10.006CrossRefPubMedGoogle Scholar
  103. 103.
    Xu Z, Vonlaufen A, Phillips PA et al (2010) Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol 177(5):2585–2596.  https://doi.org/10.2353/ajpath.2010.090899CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Suetsugu A, Snyder CS, Moriwaki H, Saji S, Bouvet M, Hoffman RM (2015) Imaging the interaction of pancreatic cancer and stellate cells in the tumor microenvironment during metastasis. Anticancer Res 35(5):2545–2551PubMedGoogle Scholar
  105. 105.
    Pang TCY, Xu Z, Pothula S et al (2017) Circulating pancreatic stellate (stromal) cells in pancreatic cancer—a fertile area for novel research. Carcinogenesis 38(6):588–591.  https://doi.org/10.1093/carcin/bgx030CrossRefPubMedGoogle Scholar
  106. 106.
    Zhang Y-F, Zhou Y-Z, Zhang B et al (2019) Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. J Cancer 10(18):4397–4407.  https://doi.org/10.7150/jca.27590CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Qian D, Lu Z, Xu Q et al (2017) Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett 397:43–51.  https://doi.org/10.1016/j.canlet.2017.03.024CrossRefPubMedGoogle Scholar
  108. 108.
    Nan L, Qin T, Xiao Y et al (2019, June) Pancreatic stellate cells facilitate Perineural invasion of pancreatic cancer via HGF/c-met pathway. Cell Transplant. 963689719851772.  https://doi.org/10.1177/0963689719851772
  109. 109.
    Van den Broeck A, Sergeant G, Ectors N, Van Steenbergen W, Aerts R, Topal B (2009) Patterns of recurrence after curative resection of pancreatic ductal adenocarcinoma. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 35(6):600–604.  https://doi.org/10.1016/j.ejso.2008.12.006CrossRefGoogle Scholar
  110. 110.
    Hamada S, Masamune A, Takikawa T et al (2012) Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells. Biochem Biophys Res Commun 421(2):349–354.  https://doi.org/10.1016/j.bbrc.2012.04.014CrossRefPubMedGoogle Scholar
  111. 111.
    Hellerbrand C (2013) Hepatic stellate cells—the pericytes in the liver. Pflüg Arch Eur J Physiol 465(6):775–778.  https://doi.org/10.1007/s00424-012-1209-5CrossRefGoogle Scholar
  112. 112.
    Lardon J, Rooman I, Bouwens L (2002) Nestin expression in pancreatic stellate cells and angiogenic endothelial cells. Histochem Cell Biol 117(6):535–540.  https://doi.org/10.1007/s00418-002-0412-4CrossRefPubMedGoogle Scholar
  113. 113.
    Birbrair A (2018) Pericyte biology: development, homeostasis, and disease. Adv Exp Med Biol 1109:1–3.  https://doi.org/10.1007/978-3-030-02601-1_1CrossRefPubMedGoogle Scholar
  114. 114.
    Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36(2):451–455.  https://doi.org/10.1177/0271678X15610340CrossRefPubMedGoogle Scholar
  115. 115.
    Birbrair A, Zhang T, Wang Z-M et al (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314.  https://doi.org/10.1089/scd.2012.0647CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Birbrair A, Zhang T, Wang Z-M et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38.  https://doi.org/10.1152/ajpcell.00084.2014CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Arnold SA, Rivera LB, Miller AF et al (2010) Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Dis Model Mech 3(1–2):57–72.  https://doi.org/10.1242/dmm.003228CrossRefPubMedGoogle Scholar
  118. 118.
    Puolakkainen PA, Brekken RA, Muneer S, Sage EH (2004) Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res MCR 2(4):215–224PubMedGoogle Scholar
  119. 119.
    Toi M, Hayashi Y, Murakami I (2018) Hepatic stellate cells derived from the nestin-positive cells in septum transversum during rat liver development. Med Mol Morphol 51(4):199–207.  https://doi.org/10.1007/s00795-018-0183-1CrossRefPubMedGoogle Scholar
  120. 120.
    Feldmann G, Dhara S, Fendrich V et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196.  https://doi.org/10.1158/0008-5472.CAN-06-3281CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Arabpour M, Cool RH, Faber KN, Quax WJ, Haisma HJ (2017) Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. J Drug Target 25(4):360–369.  https://doi.org/10.1080/1061186x.2016.1262867CrossRefPubMedGoogle Scholar
  122. 122.
    Xu Z-C, Shen H-X, Chen C et al (2018) Neuropilin-1 promotes primary liver cancer progression by potentiating the activity of hepatic stellate cells. Oncol Lett 15(2):2245–2251.  https://doi.org/10.3892/ol.2017.7541CrossRefPubMedGoogle Scholar
  123. 123.
    Zhou L, Husted H, Moore T, et al (2018) Suppression of stromal-derived Dickkopf-3 (DKK3) inhibits tumor progression and prolongs survival in pancreatic ductal adenocarcinoma. Sci Transl Med 10(464).  https://doi.org/10.1126/scitranslmed.aat3487
  124. 124.
    Incio J, Suboj P, Chin SM et al (2015) Metformin reduces Desmoplasia in pancreatic Cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS One 10(12):e0141392.  https://doi.org/10.1371/journal.pone.0141392CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Cortes E, Lachowski D, Rice A et al (2019) Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor. Oncogene 38(16):2910–2922.  https://doi.org/10.1038/s41388-018-0631-3CrossRefPubMedGoogle Scholar
  126. 126.
    Chauhan VP, Martin JD, Liu H et al (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4.  https://doi.org/10.1038/ncomms3516
  127. 127.
    Gonzalez-Villasana V, Rodriguez-Aguayo C, Arumugam T et al (2014) Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin bound-paclitaxel in pancreatic ductal adenocarcinoma. Mol Cancer Ther 13(11):2583–2594.  https://doi.org/10.1158/1535-7163.MCT-14-0028CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Witteck L, Jaster R (2015) Trametinib and dactolisib but not regorafenib exert antiproliferative effects on rat pancreatic stellate cells. Hepatobiliary Pancreat Dis Int 14(6):642–650.  https://doi.org/10.1016/S1499-3872(15)60032-7CrossRefPubMedGoogle Scholar
  129. 129.
    Froeling FEM, Feig C, Chelala C et al (2011) Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 141(4):1486–1497, 1497.e1–14.  https://doi.org/10.1053/j.gastro.2011.06.047
  130. 130.
    Guan J, Zhang H, Wen Z et al (2014) Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett 345(1):132–139.  https://doi.org/10.1016/j.canlet.2013.12.006CrossRefPubMedGoogle Scholar
  131. 131.
    Kozono S, Ohuchida K, Eguchi D et al (2013) Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res 73(7):2345–2356.  https://doi.org/10.1158/0008-5472.CAN-12-3180CrossRefPubMedGoogle Scholar
  132. 132.
    Von Hoff DD, Ramanathan RK, Borad MJ et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol Off J Am Soc Clin Oncol 29(34):4548–4554.  https://doi.org/10.1200/JCO.2011.36.5742CrossRefGoogle Scholar
  133. 133.
    Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703.  https://doi.org/10.1056/NEJMoa1304369CrossRefGoogle Scholar
  134. 134.
    Zhang R, Lin X-H, Ma M et al (2018) Periostin involved in the activated hepatic stellate cells-induced progression of residual hepatocellular carcinoma after sublethal heat treatment: its role and potential for therapeutic inhibition. J Transl Med 16(1):302.  https://doi.org/10.1186/s12967-018-1676-3CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Jin H, Jia Y, Yao Z et al (2017) Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cell Signal 33:79–85.  https://doi.org/10.1016/j.cellsig.2017.02.006CrossRefPubMedGoogle Scholar
  136. 136.
    Liu Z, Dou W, Zheng Y et al (2016) Curcumin upregulates Nrf2 nuclear translocation and protects rat hepatic stellate cells against oxidative stress. Mol Med Rep 13(2):1717–1724.  https://doi.org/10.3892/mmr.2015.4690CrossRefPubMedGoogle Scholar
  137. 137.
    She L, Xu D, Wang Z et al (2018) Curcumin inhibits hepatic stellate cell activation via suppression of succinate-associated HIF-1α induction. Mol Cell Endocrinol 476:129–138.  https://doi.org/10.1016/j.mce.2018.05.002CrossRefPubMedGoogle Scholar
  138. 138.
    Shao S, Duan W, Xu Q et al (2019) Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxidative Med Cell Longev 2019:8148510.  https://doi.org/10.1155/2019/8148510CrossRefGoogle Scholar
  139. 139.
    Edderkaoui M, Lugea A, Hui H et al (2013) Ellagic acid and Embelin affect key cellular components of pancreatic adenocarcinoma cancer and stellate cells. Nutr Cancer 65(8):1232–1244.  https://doi.org/10.1080/01635581.2013.832779CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Michalski CW, Maier M, Erkan M et al (2008) Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS One 3(2):e1701.  https://doi.org/10.1371/journal.pone.0001701CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Fearon KCH, Von Meyenfeldt MF, Moses AGW et al (2003) Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52(10):1479–1486.  https://doi.org/10.1136/gut.52.10.1479CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Moses AWG, Slater C, Preston T, Barber MD, Fearon KCH (2004) Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 90(5):996–1002.  https://doi.org/10.1038/sj.bjc.6601620CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Heller AR, Rössel T, Gottschlich B et al (2004) Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients. Int J Cancer 111(4):611–616.  https://doi.org/10.1002/ijc.20291CrossRefPubMedGoogle Scholar
  144. 144.
    Arshad A, Chung WY, Steward W, Metcalfe MS, Dennison AR (2013) Reduction in circulating pro-angiogenic and pro-inflammatory factors is related to improved outcomes in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega-3 fish oil. HPB 15(6):428–432.  https://doi.org/10.1111/hpb.12002CrossRefPubMedGoogle Scholar
  145. 145.
    Haqq J, Howells LM, Garcea G, Dennison AR (2016) Targeting pancreatic cancer using a combination of gemcitabine with the omega-3 polyunsaturated fatty acid emulsion Lipidem™. Mol Nutr Food Res 60(6):1437–1447.  https://doi.org/10.1002/mnfr.201500755CrossRefPubMedGoogle Scholar
  146. 146.
    Özdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25(6):719–734.  https://doi.org/10.1016/j.ccr.2014.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747.  https://doi.org/10.1016/j.ccr.2014.04.021CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Holloway SE, Beck AW, Shivakumar L, Shih J, Fleming JB, Brekken RA (2006) Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann Surg Oncol 13(8):1145–1155.  https://doi.org/10.1245/ASO.2006.05.049CrossRefPubMedGoogle Scholar
  149. 149.
    Guerra DAP, Paiva AE, Sena IFG et al (2018) Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 21(4):667–675.  https://doi.org/10.1007/s10456-018-9621-xCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Roife
    • 1
    • 2
  • Bhaswati Sarcar
    • 2
  • Jason B. Fleming
    • 2
    Email author
  1. 1.Department of SurgeryUniversity of South Florida Morsani College of MedicineTampaUSA
  2. 2.Department of Gastrointestinal OncologyH. Lee Moffitt Cancer CenterTampaUSA

Personalised recommendations