Advertisement

Metabolism in the Tumor Microenvironment

  • Francesca Montenegro
  • Stefano IndraccoloEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1263)

Abstract

From a general perspective, in the context of solid tumors, we can distinguish metabolic alterations of cancer cells from those of the stroma. These two components interact with each other and with the extracellular matrix (ECM), and these interactions can take the form of either metabolic competition or metabolic symbiosis. The aim of this chapter is to overview the canonical metabolic alterations of tumor and stroma cells and to present specific examples of metabolic competition and symbiosis. We will also discuss the complexity and plasticity of metabolism, which pose indeed a serious threat to our ability to target selective metabolic features of tumor microenvironment with drugs. Finally, we will highlight some limitations of state-of-the-art techniques used to study tumor metabolism and propose some innovative solutions to investigate the clinical relevance of metabolic alterations for patient management and treatment.

Keywords

Metabolism Angiogenesis Tumor Stroma Immune cell Microenvironment Glycolysis Hypoxia OXPHOS Metabolic symbiosis Metabolic competition Glucose Lactate Glutamine Lipids 

References

  1. 1.
    Ackerman D, Simon MC (2014) Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 24(8):472–478.  https://doi.org/10.1016/j.tcb.2014.06.001CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Allen E, Mieville P, Warren CM, Saghafinia S, Li L, Peng MW, Hanahan D (2016) Metabolic symbiosis enables adaptive resistance to anti-angiogenic therapy that is dependent on mTOR signaling. Cell Rep 15(6):1144–1160.  https://doi.org/10.1016/j.celrep.2016.04.029CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Anderson KG, Stromnes IM, Greenberg PD (2017) Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31(3):311–325.  https://doi.org/10.1016/j.ccell.2017.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM, Pinnick KE, Wigfield S, Buffa FM, Li JL, Zhang Q, Wakelam MJ, Karpe F, Schulze A, Harris AL (2014) Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9(1):349–365.  https://doi.org/10.1016/j.celrep.2014.08.056CrossRefPubMedGoogle Scholar
  5. 5.
    Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38.  https://doi.org/10.1152/ajpcell.00084.2014CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang T, Chen WW, Clish CB, Sabatini DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508(7494):108–112.  https://doi.org/10.1038/nature13110CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435–449.  https://doi.org/10.1016/j.immuni.2015.09.001CrossRefPubMedGoogle Scholar
  8. 8.
    Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, Frank PG, Flomenberg N, Howell A, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514.  https://doi.org/10.4161/cc.9.17.12731CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17(4):351–359.  https://doi.org/10.1038/ncb3124CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241.  https://doi.org/10.1016/j.cell.2015.08.016CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen J, Zhao KN, Vitetta L (2019) Effects of intestinal microbial(−)elaborated butyrate on oncogenic signaling pathways. Nutrients 11(5).  https://doi.org/10.3390/nu11051026
  12. 12.
    Clem BF, O'Neal J, Klarer AC, Telang S, Chesney J (2016) Clinical development of cancer therapeutics that target metabolism. QJM 109(6):367–372.  https://doi.org/10.1093/qjmed/hcv181CrossRefPubMedGoogle Scholar
  13. 13.
    Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17(10):577–593.  https://doi.org/10.1038/nrc.2017.77CrossRefPubMedGoogle Scholar
  14. 14.
    Curtarello M, Zulato E, Nardo G, Valtorta S, Guzzo G, Rossi E, Esposito G, Msaki A, Pasto A, Rasola A, Persano L, Ciccarese F, Bertorelle R, Todde S, Plebani M, Schroer H, Walenta S, Mueller-Klieser W, Amadori A, Moresco RM, Indraccolo S (2015) VEGF-targeted therapy stably modulates the glycolytic phenotype of tumor cells. Cancer Res 75(1):120–133.  https://doi.org/10.1158/0008-5472.CAN-13-2037CrossRefPubMedGoogle Scholar
  15. 15.
    DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200.  https://doi.org/10.1126/sciadv.1600200CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20.  https://doi.org/10.1016/j.cmet.2007.10.002CrossRefPubMedGoogle Scholar
  17. 17.
    Draoui N, de Zeeuw P, Carmeliet P (2017) Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biol 7(12):170219.  https://doi.org/10.1098/rsob.170219CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298.  https://doi.org/10.1016/j.ejca.2017.01.017CrossRefPubMedGoogle Scholar
  19. 19.
    Elgendy M, Ciro M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, Budillon A, Pelicci PG, Janssens V, Ogris M, Baccarini M, Lanfrancone L, Weckwerth W, Foiani M, Minucci S (2019) Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3beta-MCL-1 Axis. Cancer Cell 35(5):798–815e795.  https://doi.org/10.1016/j.ccell.2019.03.007CrossRefPubMedGoogle Scholar
  20. 20.
    Fabian C, Koetz L, Favaro E, Indraccolo S, Mueller-Klieser W, Sattler UG (2012) Protein profiles in human ovarian cancer cell lines correspond to their metabolic activity and to metabolic profiles of respective tumor xenografts. FEBS J 279:882.  https://doi.org/10.1111/j.1742-4658.2012.08479.xCrossRefPubMedGoogle Scholar
  21. 21.
    Fan TW, Lane AN, Higashi RM (2016) Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio Protoc 6(3):e1730CrossRefGoogle Scholar
  22. 22.
    Farooqi MAM, Malhotra N, Mukherjee SD, Sanger S, Dhesy-Thind SK, Ellis P, Leong DP (2018) Statin therapy in the treatment of active cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS One 13(12):e0209486.  https://doi.org/10.1371/journal.pone.0209486CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765.  https://doi.org/10.1038/nature07823CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364(Pt 1):309–315.  https://doi.org/10.1042/bj3640309CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Harjes U, Kalucka J, Carmeliet P (2016) Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol 97:15–21.  https://doi.org/10.1016/j.critrevonc.2015.10.011CrossRefPubMedGoogle Scholar
  27. 27.
    Hensley CT, Wasti AT, DeBerardinis RJ (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123(9):3678–3684.  https://doi.org/10.1172/JCI69600CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC, Kleinstein SH, Abel ED, Insogna KL, Feske S, Locasale JW, Bosenberg MW, Rathmell JC, Kaech SM (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228.  https://doi.org/10.1016/j.cell.2015.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Bruning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquiere B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G, Carmeliet P (2017) Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 36(16):2334–2352.  https://doi.org/10.15252/embj.201695518CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ippolito L, Morandi A, Giannoni E, Chiarugi P (2019) Lactate: ametabolic driver in the tumour landscape. Trends Biochem Sci 44(2):153–166.  https://doi.org/10.1016/j.tibs.2018.10.011CrossRefPubMedGoogle Scholar
  31. 31.
    Jimenez-Valerio G, Martinez-Lozano M, Bassani N, Vidal A, Ochoa-de-Olza M, Suarez C, Garcia-Del-Muro X, Carles J, Vinals F, Graupera M, Indraccolo S, Casanovas O (2016) Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. Cell Rep 15(6):1134–1143.  https://doi.org/10.1016/j.celrep.2016.04.015CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401.  https://doi.org/10.1038/nrc1877CrossRefPubMedGoogle Scholar
  33. 33.
    Kim J, DeBerardinis RJ (2019) Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab 30(3):434–446.  https://doi.org/10.1016/j.cmet.2019.08.013CrossRefPubMedGoogle Scholar
  34. 34.
    Koizume S, Miyagi Y (2016) Lipid droplets: a key cellular organelle associated with cancer cell survival under NORMOXIA and Hypoxia. Int J Mol Sci 17(9).  https://doi.org/10.3390/ijms17091430
  35. 35.
    Lehuede C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM (2016) Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res 76(18):5201–5208.  https://doi.org/10.1158/0008-5472.CAN-16-0266CrossRefPubMedGoogle Scholar
  36. 36.
    Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D, Cheng JX (2017) Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20(3):303–314e305.  https://doi.org/10.1016/j.stem.2016.11.004CrossRefPubMedGoogle Scholar
  37. 37.
    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218.  https://doi.org/10.1016/j.tibs.2015.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy. Cell Chem Biol 24(9):1161–1180.  https://doi.org/10.1016/j.chembiol.2017.08.028CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 14:11.  https://doi.org/10.1038/nrclinonc.2016.60CrossRefPubMedGoogle Scholar
  40. 40.
    Mates JM, Campos-Sandoval JA, Marquez J (2018) Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim Biophys Acta Rev Cancer 1870(2):158–164.  https://doi.org/10.1016/j.bbcan.2018.07.007CrossRefPubMedGoogle Scholar
  41. 41.
    Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777.  https://doi.org/10.1038/nrc2222CrossRefPubMedGoogle Scholar
  42. 42.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384.  https://doi.org/10.1038/nature10602CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud FG, Vernieri C, Simbolo M, Bria E, Scarpa A, Indraccolo S, Broggini M, Sozzi G, Garassino MC (2018) Metformin enhances Cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol 13(11):1692–1704.  https://doi.org/10.1016/j.jtho.2018.07.102CrossRefPubMedGoogle Scholar
  44. 44.
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388.  https://doi.org/10.1038/nature10642CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nardo G, Favaro E, Curtarello M, Moserle L, Zulato E, Persano L, Rossi E, Esposito G, Crescenzi M, Casanovas O, Sattler U, Mueller-Klieser W, Biesalski B, Thews O, Canese R, Iorio E, Zanovello P, Amadori A, Indraccolo S (2011) Glycolytic phenotype and AMP kinase modify the pathologic response of tumor xenografts to VEGF neutralization. Cancer Res 71(12):4214–4225.  https://doi.org/10.1158/0008-5472.CAN-11-0242CrossRefPubMedGoogle Scholar
  46. 46.
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503.  https://doi.org/10.1038/nm.2492CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Obre E, Rossignol R (2015) Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int J Biochem Cell Biol 59:167–181.  https://doi.org/10.1016/j.biocel.2014.12.008CrossRefPubMedGoogle Scholar
  48. 48.
    Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001.  https://doi.org/10.4161/cc.8.23.10238CrossRefPubMedGoogle Scholar
  49. 49.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47.  https://doi.org/10.1016/j.cmet.2015.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Payen VL, Mina E, Van Hee VF, Porporato PE, Sonveaux P (2019) Monocarboxylate transporters in cancer. Mol Metab 33:48.  https://doi.org/10.1016/j.molmet.2019.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pietrocola F, Demont Y, Castoldi F, Enot D, Durand S, Semeraro M, Baracco EE, Pol J, Bravo-San Pedro JM, Bordenave C, Levesque S, Humeau J, Chery A, Metivier D, Madeo F, Maiuri MC, Kroemer G (2017) Metabolic effects of fasting on human and mouse blood in vivo. Autophagy 13(3):567–578.  https://doi.org/10.1080/15548627.2016.1271513CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pisarsky L, Bill R, Fagiani E, Dimeloe S, Goosen RW, Hagmann J, Hess C, Christofori G (2016) Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep 15(6):1161–1174.  https://doi.org/10.1016/j.celrep.2016.04.028CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Platten M, Nollen EAA, Rohrig UF, Fallarino F, Opitz CA (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 18(5):379–401.  https://doi.org/10.1038/s41573-019-0016-5CrossRefPubMedGoogle Scholar
  54. 54.
    Pollak MN (2012) Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2(9):778–790.  https://doi.org/10.1158/2159-8290.CD-12-0263CrossRefPubMedGoogle Scholar
  55. 55.
    Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O, Sonveaux P (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15(4):581–592.  https://doi.org/10.1007/s10456-012-9282-0CrossRefPubMedGoogle Scholar
  56. 56.
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350.  https://doi.org/10.1038/nature10350CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Rescigno M (2017) The microbiota revolution: excitement and caution. Eur J Immunol 47(9):1406–1413.  https://doi.org/10.1002/eji.201646576CrossRefPubMedGoogle Scholar
  58. 58.
    Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJ, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJ, Schulze A, Gottlieb E (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27(1):57–71.  https://doi.org/10.1016/j.ccell.2014.12.002CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Singer K, Cheng WC, Kreutz M, Ho PC, Siska PJ (2018) Immunometabolism in cancer at a glance. Dis Model Mech 11(8).  https://doi.org/10.1242/dmm.034272
  60. 60.
    Sivridis E, Giatromanolaki A, Koukourakis MI (2005) Proliferating fibroblasts at the invading tumour edge of colorectal adenocarcinomas are associated with endogenous markers of hypoxia, acidity, and oxidative stress. J Clin Pathol 58(10):1033–1038.  https://doi.org/10.1136/jcp.2005.026260CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942PubMedPubMedCentralGoogle Scholar
  62. 62.
    Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Philp NJ, Pestell RG, Lisanti MP (2012) Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle 11(7):1445–1454.  https://doi.org/10.4161/cc.19841CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033CrossRefGoogle Scholar
  64. 64.
    Verdegem D, Moens S, Stapor P, Carmeliet P (2014) Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2:19.  https://doi.org/10.1186/2049-3002-2-19CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16):2195–2204CrossRefGoogle Scholar
  66. 66.
    Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Perez R, Serneels J, Prenen H, Ghesquiere B, Carmeliet P, Mazzone M (2016) Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab 24(5):701–715.  https://doi.org/10.1016/j.cmet.2016.09.008CrossRefPubMedGoogle Scholar
  67. 67.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787.  https://doi.org/10.1073/pnas.0810199105CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, Sneddon S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11(6):1108–1117.  https://doi.org/10.4161/cc.11.6.19530CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wu D, Zhuo L, Wang X (2017) Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol 64:125–131.  https://doi.org/10.1016/j.semcdb.2016.11.003CrossRefPubMedGoogle Scholar
  70. 70.
    Wu Q, Li B, Li Z, Li J, Sun S (2019) Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol 12(1):95.  https://doi.org/10.1186/s13045-019-0778-6CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, Zaidi N, Azad NS, Laheru DA, Frampton GM, Jaffee EM (2019) PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 4(6).  https://doi.org/10.1172/jci.insight.126908
  72. 72.
    Zaidi N, Lupien L, Kuemmerle NB, Kinlaw WB, Swinnen JV, Smans K (2013) Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res 52(4):585–589.  https://doi.org/10.1016/j.plipres.2013.08.005CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Surgery, Oncology and GastroenterologyUniversity of PadovaPadovaItaly
  2. 2.Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV – IRCCSPadovaItaly

Personalised recommendations