Advertisement

Renal Function Evaluation in Tropical Diseases

  • Geraldo Bezerra da Silva JuniorEmail author
  • Elvino Barros
  • Elizabeth De Francesco Daher
  • Francisco Veríssimo Veronese
Chapter
  • 28 Downloads

Abstract

Renal function assessment is fundamental in a variety of clinical settings, including tropical diseases, most of which are considered neglected diseases. This chapter discusses the main methods for assessing renal function. The glomerular filtration rate (GFR) is the sum of glomerular filtration of all nephrons and reflects the overall renal function. The GFR is widely accepted as the best renal function measure. Serum creatinine, a product of muscle metabolism, is 85–90% filtered in the renal tubules and represents the most frequently used and most practical marker for renal function assessment. Serum creatinine is considered a late marker of kidney injury, since its elevation occurs when there is a loss of more than 50% of renal function. Currently, the Kidney Disease Improving Global Outcomes (KDIGO) guidelines recommend the use of serum creatinine-based chronic kidney disease epidemiology (CKD-EPI) equation to estimate renal function in clinical practice. Tubular function comprises the reabsorption and secretion of substances, predominantly water and electrolytes, in addition to regulating the mechanisms of urinary concentration and acidification. The assessment of renal tubular function has two main indications: investigation of primary tubular diseases and detection of early tubular alterations during the course of glomerular diseases (in this case, in the context of tropical diseases, which can often cause tubulointerstitial lesions and asymptomatic tubular disorders). Renal function assessment is of utmost importance in tropical diseases, since renal involvement is a frequent occurrence, both glomerular and tubulointerstitial involvement.

Keywords

Renal function Glomerular filtration Creatinine Renal tubular acidosis Neglected diseases 

References

  1. 1.
    Barros E, Thomé FS, Karohl C. Fisiologia renal aplicada. In: Nefrologia. Rotinas, diagnóstico e tratamento. 2nd ed. Porto Alegre: ArtMed; 1999. p. 25–46.Google Scholar
  2. 2.
    Eaton DC, Pooler JP. Fisiologia Renal de Vander. 8th ed. Porto Alegre: AMGH; 2016.Google Scholar
  3. 3.
    Skorecki K, Chertow GM, Marsden PA, Taal MW, ASL Y, editors. Brenner and Rector's the kidney. 10th ed. Philadelphia: Elsevier Saunders; 2016.Google Scholar
  4. 4.
    Silva Junior GB, Jereissati AAR, Neri AKM, Lino DOC, Oliveira JGR, Daher EF. Neglected tropical diseases with an impact on kidney function. In: Rodríguez-Morales AJ, editor. Current topics in tropical emerging diseases and travel medicine. London: IntechOpen; 2018. p. 31–47.Google Scholar
  5. 5.
    Meneses GC, Cavalcante MG, Silva Junior GB, Martins AMC, Neto RDJP, Libório AB, Daher EF. Endothelial glycocalyx damage and renal dysfunction in HIV patients receiving combined antiretroviral therapy. AIDS Res Hum Retrovir. 2017;33(7):703–10.CrossRefGoogle Scholar
  6. 6.
    Meneses GC, Daher EF, Silva Junior GB, Libório AB, Martins AC. Serum neutrophil gelatinase-associated lipocalin levels predict acute kidney injury in visceral leishmaniasis [abstract]. J Am Soc Nephrol. 2016;27(Suppl):242.Google Scholar
  7. 7.
    Santos TE, Gonçalves RP, Barbosa MC, Silva Junior GB, Daher EF. Monocyte chemoattractant protein-1: a potential biomarker of renal lesion and its relation with oxidative status in sickle cell disease. Blood Cells Mol Dis. 2015;54(3):297–301.CrossRefGoogle Scholar
  8. 8.
    Libório AB, Braz MB, Seguro AC, Meneses GC, Neves FM, Pedrosa DC, Cavalcanti LP, Martins AM, Daher EF. Endothelial glycocalyx damage is associated with leptospirosis acute kidney injury. Am J Trop Med Hyg. 2015;92(3):611–6.CrossRefGoogle Scholar
  9. 9.
    Meneses GC, Libório AB, Daher EF, Silva Junior GB, Costa MF, Pontes MA, Martins AM. Urinary monocyte chemotactic protein-1 (MCP-1) in leprosy patients: increased risk for kidney damage. BMC Infect Dis. 2014;14:451.CrossRefGoogle Scholar
  10. 10.
    Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–4.CrossRefGoogle Scholar
  11. 11.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the Modification of Diet in Renal Disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.CrossRefGoogle Scholar
  12. 12.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRefGoogle Scholar
  13. 13.
    Matsushita K, Selvin E, Bash LD, Astor BC, Coresh J. Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2010;55:648–59.CrossRefGoogle Scholar
  14. 14.
    Veronese FV, Gomes EC, Chanan J, Carraro MA, Camargo EG, Soares AA, Thomé FS, Silveiro SP. Performance of CKD-EPI equation to estimate glomerular filtration rate as compared to MDRD equation in South Brazilian individuals in each stage of renal function. Clin Chem Lab Med. 2014;52:1747–54.CrossRefGoogle Scholar
  15. 15.
    National Kidney Foundation (NKF), Kidney Disease Outcome Quality Initiative (K/DOQI) Advisory Board. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 4. Definition and classification of stages of chronic kidney disease. Am J Kidney Dis. 2002;39(Suppl 2):S46–75.Google Scholar
  16. 16.
    Czock D, Bertsche T, Haefeli WE. Drug adjustments in patients with renal impairment. Am J Kidney Dis. 2009;54(5):983–4.CrossRefGoogle Scholar
  17. 17.
    Doogue MP, Polasek TM. Drug dosing in renal disease. Clin Biochem Rev. 2011;32(2):69–73.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395–406.CrossRefGoogle Scholar
  19. 19.
    Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367:20–9.CrossRefGoogle Scholar
  20. 20.
    Blanchard A, Poussou R, Houillier P. Exploration des fonctions tubulaires rénales. Nephrol Ther. 2009;5(1):68–83.CrossRefGoogle Scholar
  21. 21.
    Daher EF, Zanetta DM, Abdulkader RC. Pattern of renal function recovery after leptospirosis acute renal failure. Nephron Clin Pract. 2004;98(1):c8–14.CrossRefGoogle Scholar
  22. 22.
    Oliveira MJ, Silva Junior GB, Sampaio AM, Montenegro BL, Alves MP, Henn GA, et al. Preliminary study on tubuloglomerular dysfunction and evidence of renal inflammation in patients with visceral leishmaniasis. Am J Trop Med Hyg. 2014;91(5):908–11.CrossRefGoogle Scholar
  23. 23.
    Oliveira RA, Diniz LF, Teotônio LO, Lima CG, Mota RM, Martins A, et al. Renal tubular dysfunction in patients with American cutaneous leishmaniasis. Kidney Int. 2011;80(10):1099–106.CrossRefGoogle Scholar
  24. 24.
    Duarte DB, Vanderlei LA, Bispo RK, Pinheiro ME, Silva Junior GB, Martins AM, et al. Renal function in hepatosplenic schistosomiasis – an assessment of renal tubular disorders. PLoS One. 2014;9(12):e115917.CrossRefGoogle Scholar
  25. 25.
    Daher EF, Rocha NA, Oliveira MJ, Franco LF, Oliveira JL, Silva Junior GB, et al. Renal function improvement with pentavalent antimonial agents in patients with visceral leishmaniasis. Am J Nephrol. 2011;33(4):332–6.CrossRefGoogle Scholar
  26. 26.
    Lima Verde FA, Lima Verde FA, Lima Verde IA, Silva Junior GB, Daher EF, Lima Verde EM. Evaluation of renal function in human visceral leishmaniasis (kala-azar): a prospective study on 50 patients from Brazil. J Nephrol. 2007;20(4):430–6.PubMedGoogle Scholar
  27. 27.
    Wrong O, Davies HE. The excretion of acid in renal disease. Q J Med. 1959;28:259–313.PubMedGoogle Scholar
  28. 28.
    Oster JR. A short duration renal acidification test using calcium chloride. Nephron. 1975;14:281–92.CrossRefGoogle Scholar
  29. 29.
    Kurtzman N. Acquired distal renal tubular acidosis. Kidney Int. 1983;24:807–19.CrossRefGoogle Scholar
  30. 30.
    Rado JP. 1-desamino-8-D-arginine vasopressin (DDAVP) concentration test. Am J Med Sci. 1978;275:43–52.CrossRefGoogle Scholar
  31. 31.
    Abyholm G, Monn E. Intranasal DDAVP-test in the study of renal concentrating capacity in children with recurrent urinary tract infections. Eur J Pediatr. 1979;130:149–54.CrossRefGoogle Scholar
  32. 32.
    Tryding N, Sterner G, Berg B, Harris A. Subcutaneous and intranasal administration of 1-deamino-8-d-arginine vasopressin in the assessment of renal concentration capacity. Nephron. 1987;45:27–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Geraldo Bezerra da Silva Junior
    • 1
    Email author
  • Elvino Barros
    • 2
  • Elizabeth De Francesco Daher
    • 3
  • Francisco Veríssimo Veronese
    • 4
  1. 1.Post-Graduation Programs in Public Health and Medical Sciences, School of MedicineUniversity of FortalezaFortalezaBrazil
  2. 2.School of MedicineFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Post-Graduation Program in Medical Sciences, School of MedicineFederal University of CearaFortalezaBrazil
  4. 4.Department of Internal MedicineFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations