Advertisement

Millimeter-Wave Substrates and System-Level Approach in Millimeter-Wave Research and Design

  • Mladen BožanićEmail author
  • Saurabh Sinha
Chapter
  • 45 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 658)

Abstract

With device scaling, the number and the density of components that can be placed on chip increase. With every new process generation, more and more active devices can be placed into a small area of the IC chip. The phenomenon that is now known as Moore’s law indicates that the circuit density roughly doubles every 18 or 24 months.

References

  1. 1.
    Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. Springer International Publishing, SwitzerlandGoogle Scholar
  2. 2.
    Tummala R (2007) System on package: miniaturization of the entire system. McGraw Hill Professional, New YorkGoogle Scholar
  3. 3.
    Greig W (2007) Integrated circuit packaging, assembly and interconnections. Springer Science & Business Media, BerlinGoogle Scholar
  4. 4.
    Sturdivant R (2013) Microwave and millimeter-wave electronic packaging. Artech House, NorwoodGoogle Scholar
  5. 5.
    Joseph T, Sebastian MT (2010) Microwave dielectric properties of (Sr1xAx)2(Zn1xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). J Am Ceram Soc 93:147–154CrossRefGoogle Scholar
  6. 6.
    Liu D, Pfeiffer U, Grzyb J, Gaucher B (2009) Advanced millimeter-wave technologies: antennas, packaging and circuits. Wiley, HobokenGoogle Scholar
  7. 7.
    Kuang K, Sturdivant R (2017) RF and microwave microelectronics packaging II. Springer, BerlinGoogle Scholar
  8. 8.
    Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications. Wiley, HobokenGoogle Scholar
  9. 9.
    RT/Duroid® laminates [Internet] [Cited 2019 June 8]. Available from: https://www.rogerscorp.com/acs/producttypes/6/RT-duroid-Laminates.aspx
  10. 10.
    RT/Duroid® 6035HTC laminates [Internet] [Cited 2019 June 8]. Available from: https://www.rogerscorp.com/acs/products/38/RT-duroid-6035HTC-Laminates.aspx
  11. 11.
    Lu D, Wong CP (eds) (2009) Materials for advanced packaging. Springer US, BostonGoogle Scholar
  12. 12.
    Synkiewicz B, Kulawik J, Skwarek A, Yashchyshyn Y, Piasecki P (2016) High resolution patterns on LTCC substrates for microwave applications obtained by screen printing and laser ablation. In: 2016 39th international spring seminar on electronics technology (ISSE), pp 17–21Google Scholar
  13. 13.
    Yuan Y, Zhang SR, Zhou XH, Li EZ (2013) MgTiO3 filled PTFE composites for microwave substrate applications. Mater Chem Phys 141:175–179CrossRefGoogle Scholar
  14. 14.
    Peng G, Wu C-C, Diao C-C, Yang C-F (2018) Investigation of the composites of epoxy and micro-scale BaTi4O9 ceramic powder as the substrate of microwave communication circuit. Microsyst Technol 24:343–349CrossRefGoogle Scholar
  15. 15.
    Li Y, Goyal D (2017) 3D microelectronic packaging: from fundamentals to applications. Springer, BerlinGoogle Scholar
  16. 16.
    Rida A, Margomeno A, Lee JS, Schmalenberg P, Nikolaou S, Tentzeris MM (2010) Integrated wideband 2-D and 3-D transitions for millimeter-wave rf front-ends. IEEE Antennas Wirel Propag Lett 9:1080–1083CrossRefGoogle Scholar
  17. 17.
    Maestrojuan I, Palacios I, Ederra I, Gonzalo R (2015) USE of COC substrates for millimeter-wave devices. Microwave Opt Technol Lett 57:371–377CrossRefGoogle Scholar
  18. 18.
    Johansson C, Uhlig S, Tageman O, Alping A, Haglund J, Robertsson M et al (2003) Microwave circuits in multilayer inorganic-organic polymer thin film technology on laminate substrates. IEEE Trans Adv Packag 26:81–89CrossRefGoogle Scholar
  19. 19.
    Sebastian MT, Jantunen H (2010) Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7:415–434Google Scholar
  20. 20.
    Gupta N, Mishra A (2016) Selection of substrate material for hybrid microwave integrated circuits (HMICs). 1 [Internet] [Cited 2019 June 8]; 62. Available from: https://www.lmaleidykla.lt/ojs/index.php/energetika/article/view/3316
  21. 21.
    Drishya V, Unnimaya AN, Naveenraj R, Suresh EK, Ratheesh R (2016) Preparation, characterization, and dielectric properties of PP/CaTiO3 composites for microwave substrate applications. Int J Appl Ceram Technol 13:810–815CrossRefGoogle Scholar
  22. 22.
    Namitha LK, Chameswary J, Ananthakumar S, Sebastian MT (2013) Effect of micro- and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate. Ceram Int 39:7077–7087CrossRefGoogle Scholar
  23. 23.
    Sharifi H, Lahiji RR, Lin H, Ye PD, Katehi LPB, Mohammadi S (2009) Characterization of parylene-N as flexible substrate and passivation layer for microwave and millimeter-wave integrated circuits. IEEE Trans Adv Packag 32:84–92CrossRefGoogle Scholar
  24. 24.
    Cheema HM, Shamim A (2013) The last barrier: on-chip antennas. IEEE Microwave Mag 14:79–91CrossRefGoogle Scholar
  25. 25.
    Wang H, Lin K, Tsai Z, Lu L, Lu H, Wang C et al (2009) MMICs in the millimeter-wave regime. IEEE Microwave Mag 10:99–117CrossRefGoogle Scholar
  26. 26.
    Goettel B, Winkler W, Bhutani A, Boes F, Pauli M, Zwick T (2018) Packaging solution for a millimeter-wave system-on-chip radar. IEEE Trans Compon Packag Manuf Technol 8:73–81CrossRefGoogle Scholar
  27. 27.
    Watson J, Castro G (2015) A review of high-temperature electronics technology and applications. J Mater Sci Mater Electron 26:9226–9235CrossRefGoogle Scholar
  28. 28.
    Heinrich W (2005) The flip-chip approach for millimeter wave packaging. IEEE Microwave Mag 6:36–45CrossRefGoogle Scholar
  29. 29.
    Han F, Lu K, Horng T, Lin J, Cheng H, Chiu C et al (2009) Packaging effects on the sure of merit of a CMOS cascode low-noise amplifier: flip-chip versus wire-bond. In: 2009 IEEE MTT-S international microwave symposium digest, pp 601–604Google Scholar
  30. 30.
    Wojnowski M, Issakov V, Knoblinger G, Pressel K, Sommer G, Weigel R (2012) High-$Q$ inductors embedded in the fan-out area of an eWLB. IEEE Trans Compon Packag Manuf Technol 2:1280–1292CrossRefGoogle Scholar
  31. 31.
    Seler E, Wojnowski M, Hartner W, Böck J, Lachner R, Weigel R et al (2014) 3D rectangular waveguide integrated in embedded wafer level ball grid array (eWLB) package. In: 2014 IEEE 64th electronic components and technology conference (ECTC), pp 956–962Google Scholar
  32. 32.
    Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G et al (2006) System-on-chip: reuse and integration. Proc IEEE 94:1050–1069CrossRefGoogle Scholar
  33. 33.
    Mellet DS, du Plessis M (2014) A novel CMOS hall effect sensor. Sens Actuators A 211:60–66CrossRefGoogle Scholar
  34. 34.
    ProxFusion. Azoteq [Internet] [Cited 2019 June 11]. Available from: https://www.azoteq.com/products/proxfusion/
  35. 35.
    Zhang J, Goussetis G, Richard L, Huang G, Fusco V, Dielacher F (2014) Low noise amplifier with integrated balanced antenna for 60 GHz wireless communications. IEEE Trans Antennas Propag 62:3407–3411CrossRefGoogle Scholar
  36. 36.
    Chen J, Henrie M, Mar MF, Nizic M (2012) Mixed-signal methodology guide. Lulu.comGoogle Scholar
  37. 37.
    Shi Y, Shang Y, Yu H, Elassaad S (2013) IC-package-system integration design. In: Tong H-M, Lai Y-S, Wong CP (eds): Advanced flip chip packaging. Springer US, Boston, MAGoogle Scholar
  38. 38.
    Zhang L, Liu Z, Chen S-W, Wang Y, Long W-M, Guo Y et al (2018) Materials, processing and reliability of low temperature bonding in 3D chip stacking. J Alloy Compd 750:980–995CrossRefGoogle Scholar
  39. 39.
    Lai M-F, Li S-W, Shih J-Y, Chen K-N (2011) Wafer-level three-dimensional integrated circuits (3D IC): schemes and key technologies. Microelectron Eng 88:3282–3286CrossRefGoogle Scholar
  40. 40.
    Wang Q, Chen Z, Jiang J, Guo Z, Mao Z (2017) Dynamic data split: a crosstalk suppression scheme in TSV-based 3D IC. Integration 59:23–30CrossRefGoogle Scholar
  41. 41.
    Lau JH (2010) Design and process of 3D MEMS system-in-package (SiP). J Microelectron Electron Packag 7:10–15CrossRefGoogle Scholar
  42. 42.
    Cheng H-C, Huang T-C, Hwang P-W, Chen W-H (2016) Heat dissipation assessment of through silicon via (TSV)-based 3D IC packaging for CMOS image sensing. Microelectron Reliab 59:84–94CrossRefGoogle Scholar
  43. 43.
    Lau JH (2010) Critical issues of TSV and 3D IC integration. J Microelectron Electron Packag 7:35–43CrossRefGoogle Scholar
  44. 44.
    Lacrevaz T, Bermond C, Bouayadi OE, Houzet G, Artillan P, Lamy Y et al (2014) Electrical broadband characterization method of dielectric molding in 3-D IC and results. IEEE Trans Compon Packag Manuf Technol 4:1515–1522CrossRefGoogle Scholar
  45. 45.
    Lim J, Cho J, Jung DH, Kim JJ, Choi S, Kim D-H et al (2018) Modeling and analysis of TSV noise coupling effects on RF LC-VCO and shielding structures in 3D IC. IEEE Trans Electromagn Compat 60:1939–1947CrossRefGoogle Scholar
  46. 46.
    Adamshick S, Coolbaugh D, Liehr M (2015) Experimental characterization of coaxial through silicon vias for 3D integration. Microelectron J 46:377–382CrossRefGoogle Scholar
  47. 47.
    Mack W (2011) System in package—how to cope with increasing challenges? Electron Device Failure Analysis 14:4–11 Google Scholar
  48. 48.
    Lee YC, Park CS (2016) LTCC-based monolithic system-in-package (SiP) module for millimeter-wave applications. Int J RF Microwave Comput Aided Eng 26:803–811CrossRefGoogle Scholar
  49. 49.
    Santagata F, Dong M, Yuan C, Sokolovskij R, Wei J, Zhang G (2015) 3D system-in-package design using stacked silicon submount technology. Microelectron Int 32:63–72CrossRefGoogle Scholar
  50. 50.
    Raj PM, Sharma H, Sitaraman S, Mishra D, Tummala R (2017) System scaling with nanostructured power and RF components. Proc IEEE 105:2330–2346CrossRefGoogle Scholar
  51. 51.
    Liu Y, Agrawal A, Natarajan A (2016) Millimeter-wave IC-antenna cointegration for integrated transmitters and receivers. IEEE Antennas Wirel Propag Lett 15:1848–1852CrossRefGoogle Scholar
  52. 52.
    Wu P, Liu F, Li J, Chen C, Hou F, Cao L et al (2017) Design and implementation of a rigid-flex RF front-end system-in-package. Microsyst Technol 23:4579–4589CrossRefGoogle Scholar
  53. 53.
    Hagelauer A, Wojnowski M, Pressel K, Weigel R, Kissinger D (2018) Integrated systems-in-package: heterogeneous integration of millimeter-wave active circuits and passives in fan-out wafer-level packaging technologies. IEEE Microwave Mag 19:48–56CrossRefGoogle Scholar
  54. 54.
    Lin Y, Kang C, Chua L, Choi WK, Yoon SW (2016) Advanced 3D eWLB-PoP (Embedded wafer level ball grid array—package on package) technology. In: 2016 IEEE 66th electronic components and technology conference (ECTC), pp 1772–1777Google Scholar
  55. 55.
    Dai WW (2016) Historical perspective of system in package (SiP). IEEE Circuits Syst Mag 16:50–61CrossRefGoogle Scholar
  56. 56.
    Decrossas E, Glover MD, Porter K, Cannon T, Stegeman T, Allen-McCormack N et al (2015) High-performance and high-data-rate quasi-coaxial LTCC vertical interconnect transitions for multichip modules and system-on-package applications. IEEE Trans Compon Packag Manuf Technol 5:307–313CrossRefGoogle Scholar
  57. 57.
    Lee YC, Kim TW, Ariffin AB, Myoung N-G (2011) 60-GHz amplitude shift-keying receiver LTCC system-on-package module. Microwave Opt Technol Lett 53:758–761CrossRefGoogle Scholar
  58. 58.
    Lee YC, Kong M, Zhang Y (2017) Microelectromechanical systems and packaging. In: Materials for advanced packaging. Springer, Berlin, pp 697–731Google Scholar
  59. 59.
    Kim MS, Pulugurtha MR, Sundaram V, Tummala RR, Yun H (2018) Ultrathin high-$Q$2-D and 3-D RF inductors in glass packages. IEEE Trans Compon Packag Manuf Technol 8:643–652Google Scholar
  60. 60.
    Samanta KK, Robertson ID (2011) Advanced multilayer thick-film system-on-package technology for miniaturized and high performance CPW microwave passive components. IEEE Trans Compon Packag Manuf Technol 1:1695–1705CrossRefGoogle Scholar
  61. 61.
    Lim K, Pinel S, Davis M, Sutono A, Lee C-H, Heo D et al (2002) RF-system-on-package (SOP) for wireless communications. IEEE Microwave Mag 3:88–99CrossRefGoogle Scholar
  62. 62.
    Song S, Kim Y, Maeng J, Lee H, Kwon Y, Seo K (2009) A millimeter-wave system-on-package technology using a thin-film substrate with a flip-chip interconnection. IEEE Trans Adv Packag 32:101–108CrossRefGoogle Scholar
  63. 63.
    Pal S, Petrisko D, Bajwa AA, Gupta P, Iyer SS, Kumar R (2018) A case for packageless processors. In: 2018 IEEE international symposium on high performance computer architecture (HPCA), pp 466–479Google Scholar
  64. 64.
    LaMeres BJ, McIntosh C, Abusultan M (2010) Novel 3-D coaxial interconnect system for use in system-in-package applications. IEEE Trans Adv Packag 33:37–47CrossRefGoogle Scholar
  65. 65.
    Huang S, DeLaCruz J (2017) Improvements of system-in-package integration and electrical performance using BVA wire bonding. IEEE Trans Compon Packag Manuf Technol 7:1020–1034CrossRefGoogle Scholar
  66. 66.
    Hong W (2014) Millimeter-wave antennas and arrays. In: Handbook of antenna technologies, pp 1–53Google Scholar
  67. 67.
    Mahanfar A, Lee S, Parameswaran AM, Vaughan RG (2010) Self-assembled monopole antennas with arbitrary shapes and tilt angles for system-on-chip and system-in-package applications. IEEE Trans Antennas Propag 58:3020–3028CrossRefGoogle Scholar
  68. 68.
    Zheng L-R, Duo X, Shen M, Michielsen W, Tenhunen H (2004) Cost and performance tradeoff analysis in radio and mixed-signal system-on-package design. IEEE Trans Adv Packag 27:364–375Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of JohannesburgJohannesburgSouth Africa

Personalised recommendations