Advertisement

Long-Term Durability of Solar Photovoltaic Modules

  • Chibuisi Chinasaokwu OkorieimohEmail author
  • Brian Norton
  • Michael Conlon
Conference paper
  • 14 Downloads

Abstract

Solar photovoltaic (PV) panels experience long-term performance degradation resulting in lower like-per-like efficiencies and performance ratios when compared with their initial performance. Manufacturers of solar photovoltaic modules usually guarantee the life span for more than 20 years. It is therefore necessary to track and mitigate degradation of PV modules over this period to satisfy such guarantees and beyond this period to identify maintenance and repair requirements. Degradation of solar PV modules makes them less efficient, less reliable and, ultimately, inoperative. This paper reviews relevant literature to discuss:
  • Causes of efficiency reductions in photovoltaic cells

  • Ways to achieve long-term durability of solar photovoltaic modules

  • How viability of solar photovoltaic modules is affected by degradation

  • The remedies to solar photovoltaic (PV) degradation

Keywords

Durability Solar Photovoltaic Ultraviolet radiation 

References

  1. Ancuta, F. & Cepisca, C. (2011). Fault analysis possibilities for PV panels. Proceedings of the 3rd International Youth Conference on Energetics (IYCE), pp. 1–5.Google Scholar
  2. Breitenstein, O., Rakotoniaina, J. P., & Al Rifai, M. H. (2003). Quantitative evaluation of shunts in solar cells by lock-in thermography. Progress in Photovoltaics: Research and Applications, 11, 515–526.  https://doi.org/10.1002/pip.520CrossRefGoogle Scholar
  3. Buerhop, C., Schlegel, D., Niess, M., & Vodermayer, C. (2011). Quality control of PV-modules in the field using infrared-thermography. Proceedings of the 26th PVSEC, Hamburg, Germany, pp. 3894-3897.  https://doi.org/10.4229/26thEUPVSEC2011-5AO.5.2.
  4. Buerhop-Lutz, C. L., & Scheuerpflug, H. (2015). Inspecting PV-plants using aerial, drone-mounted infrared thermography system. Proceedings of the 3rd South African Solar Energy Conference, 3, 422–429. http://hdl.handle.net/2263/49538Google Scholar
  5. Castillo-Cagigal, M., Caamano-Martin, E., Matallanas, E., Masa-Bote, D., Gutierrez, A., Monasterio-Huelin, F., & Jimenez-Leube, J. (2011). PV self-consumption optimisation with storage and active DSM for the residential sector. Journal of Solar Energy, 85(9), 2338–2348.CrossRefGoogle Scholar
  6. David, A. Q., Muyiwa, A. S., Gabriel, T., & Isaac, A. E. (2017). Reliability and degradation of solar PV modules-case study of 19-year-old polycrystalline modules in Ghana. Technologies, 5, 22.  https://doi.org/10.3390/technologies5020022CrossRefGoogle Scholar
  7. Dunlop, E. D., & Halton, D. (2006). The performance of crystalline silicon photovoltaic solar modules after 22 years of continuous outdoor exposure. Progress in Photovoltaics, 14(1), 53–64.  https://doi.org/10.1002/pip.627CrossRefGoogle Scholar
  8. Jia, Y. Y., Thomas, R., Armin, G. A., & Timothy, M. W. (2014). Performance degradation of various PV module technologies in tropical Singapore. IEEE Journal of Photovoltaics, 4(5), 1288–1294.  https://doi.org/10.1109/JPHOTOV.2014.2338051CrossRefGoogle Scholar
  9. Johnston, S.W., Call, N.J., Phan, B., & Ahrenkiel, R.K. (2009). Applications of imaging techniques for solar cell characterization. Proceedings of the 34th IEEE, Photovoltaic Specialists Conference (PVSC), pp. 000276-000281. doi: https://doi.org/10.1109/PVSC.2009.5411681
  10. King, D. L., Kratochvil, J. A., Quintana, M. A., & McMahon, T. J. (2000). Applications for infrared imaging equipment in photovoltaic cell, module, and system testing. Proceedings of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000, 1487–1490.  https://doi.org/10.1109/PVSC.2000.916175CrossRefGoogle Scholar
  11. Köntges, M., Kunze, I., Naumann, V., Richter, S., Hagendorf, C., Berghold, J., & Roericht, M. (2008). Snail tracks, worm marks and cell cracks. Photovoltaic power systems programme. IEA International Energy Agency, 7–8, 36–40.Google Scholar
  12. Krenzinger, A., & De Andrade, A. C. (2007). Accurate outdoor glass thermographic thermometry applied to solar energy devices. Journal of Solar Energy, 81, 1025–1034.CrossRefGoogle Scholar
  13. Kuitche, J., Pan, R., & Tamizhmani, G. (2014). Investigation of dominant figures modes for field-aged c-Si modules in desert climatic conditions. IEEE Journal of Photovoltaics, 4, 814–826.CrossRefGoogle Scholar
  14. Li, X., Prawiradiraja, T. P., & Battul, D. (2013). The role of humidity in energy output of solar panels in coastal regions. GSTF Journal of Engineering Technology, 2, 72–76.CrossRefGoogle Scholar
  15. Li, X. Y. (2016). Degradation analysis of photovoltaic modules based on operational data: effects of seasonal pattern and sensor drifting. IOP Conference Series: Earth and Environmental Science, 40, 012063.  https://doi.org/10.1088/1755-1315/40/1/012063CrossRefGoogle Scholar
  16. McCormack, S. J., & Norton, B. (2013). In E. Michalena & J. M. Hills (Eds.), The shadows cast by inadequate energy governance: Why more sun does not necessarily mean more photovoltaic electricity, in renewable energy governance: Challenges and insecurities. Heidelberg: Springer-Verlag.Google Scholar
  17. Murari, L. A., Pradip, K. S., Soumya, D., Biplab, S., Anagh, G., Arvind, P., & Biswas, R. (2017). An improved approach to design a photovoltaic panel. Indonesian Journal of Electrical Engineering and Computer Science, 5(3), 515–520.  https://doi.org/10.11591/ijeecs.v5.i3.pp515-520CrossRefGoogle Scholar
  18. Nochang, P., Jaeseong, J., & Changwoon, H. (2014). Estimation of the degradation rate of multi-crystalline silicon photovoltaic module under thermal cycling stress. Microelectronics Reliability, 54, 1562.  https://doi.org/10.1016/j.microrel.2014.03.021CrossRefGoogle Scholar
  19. Norton, B. (1999). Renewable electricity what is the true cost? Power Engineering Journal, 13, 6–12.CrossRefGoogle Scholar
  20. Okorieimoh, C. C., Norton, B., & Conlon, M. (2019). Effect of transient performance changes on photovoltaic modules output. 10th Annual Graduate Research School Symposium, Technological University Dublin, Ireland.  https://doi.org/10.13140/RG.2.2.28516.94083.
  21. Osterwald, C.R., Anderberg, A., Rummel, S., & Ottoson, L. (2002). Degradation analysis of weathered crystalline-silicon PV modules. Proceedings of the 29th IEEE Photovoltaic Specialist Conference. pp. 1392-1395. Retrieved from http://www.osti.gov/bridge
  22. Parveen, B., & Saurabh, B. (2019). Clustering-based computation of degradation rate for photovoltaic systems. Journal of Renewable and Sustainable Energy, 11(1), 014701.  https://doi.org/10.1063/1.5042688CrossRefGoogle Scholar
  23. Pingel, S., Frank, O., Winkler, M., Daryan, S., Geipel, T., Hoehne, H., & Berghold, J. (2010). Potential induced degradation of solar cells and panels Proceedings of the 35th IEEE Photovoltaic Specialist Conference. pp. 2817-2822.Google Scholar
  24. Pramod, R., Tiwari, G. N., Sastry, O. S., Birinchi, B., & Vikrant, S. (2016). Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Journal of Solar Energy, 135, 786–795.  https://doi.org/10.1016/j.solener.2016.06.047CrossRefGoogle Scholar
  25. PVTRIN. (2011). WP2_D2.6_catalogue of common failures and improper practices on PV installations and maintenance_ver 1, EPIA, created June 2011.Google Scholar
  26. Saadsaoud, M., Ahmeda, A. H., Er, Z., & Rouabah, Z. (2017). Experimental study of degradation modes and their effects on reliability of photovoltaic modules after 12 years of field operation in the steppe region. Special issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016). Journal of Acta Physica Polonica A, 132, 3–11.  https://doi.org/10.12693/APhysPolA.132.930CrossRefGoogle Scholar
  27. Sopori, B., Basnyat, P., Shet, S., Mehta, V., Binns, J., & Appel, J. (2012). Understanding light induced degradation of c-Si solar cells. Proceeding of the IEEE Photovoltaic Specialist Conference. pp. 5200-54200.Google Scholar
  28. Spagnolo, G.S., Del Vecchio, P., Makary, G., Papalillo, D., & Martocchia, A. (2012). A review of IR thermography applied to PV systems. Proceedings of the Environment and Electrical Engineering (EEEIC). 11th International Conference, pp. 879-884.Google Scholar
  29. Takatoshi, H., Tomoya, N., Tadashi, T., & Yoshitaka, I. (2018). Influence of degradation in units of PV modules on electric power output of PV system. Journal of International Council on Electrical Engineering., 8(1), 118–126.  https://doi.org/10.1080/22348972.2018.1477095CrossRefGoogle Scholar
  30. Tetsuyuki, I., & Atsushi, M. (2017). Annual degradation rates of recent crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 25, 953–967.  https://doi.org/10.1002/pip.2903CrossRefGoogle Scholar
  31. Tiwari, G. N., Mishra, R. K., & Solanki, S. C. (2011). Photovoltaic modules and their applications: A review on thermal modelling. Applied Energy, 88, 2287–2304.CrossRefGoogle Scholar
  32. Zhengpeng, X., Timothy, M. W., & Armin, G. A. (2011). PV module durability testing under high voltage biased damp heat conditions. Energy Procedia, 8, 384–389. Retrieved from www.sciencedirect.comCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chibuisi Chinasaokwu Okorieimoh
    • 1
    Email author
  • Brian Norton
    • 1
  • Michael Conlon
    • 1
  1. 1.Dublin Energy Lab, School of Electrical and Electronic EngineeringTechnological University DublinDublin 8Ireland

Personalised recommendations