Outlook on Security and Privacy in IoHT: Key Challenges and Future Vision

  • Moustafa Mamdouh
  • Ali Ismail AwadEmail author
  • Hesham F. A. Hamed
  • Ashraf A. M. Khalaf
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)


The Internet of Things (IoT) security and privacy have received considerable research attention due to the IoT applicability in various domains. IoT systems have several applications, such as smart homes, smart cities, e-Health, industry, agriculture, and environmental monitoring. One of the most important applications is the Internet of Healthcare Things (IoHT) because it helps humans and patients obtain rapid diagnoses, remote monitoring, and home rehabilitation. IoHT security can be classified into four categories: applications, architecture, communication, and data security. This paper presents a short, but focused, review on IoHT security and privacy. It also explores recent security algorithms and protocols that are used to secure personal patient data, clinicians, and healthcare information. The future vision of IoHT challenges and countermeasures is given at the end of this study. Blockchain healthcare technology provides secure digital payment and privileged data access.


Security Privacy IoHT Threats Blockchain 


  1. 1.
    Porambage, P., Okwuibe, J., Liyanage, M., Ylianttila, M., Taleb, T.: Survey on multi-access edge computing for Internet of Things realization. IEEE Commun. Surv. Tutor. 20(4), 2961–2991 (2018)CrossRefGoogle Scholar
  2. 2.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  3. 3.
    Okoh, E., Awad, A.I.: Biometrics applications in e-health security: a preliminary survey. In: International Conference on Health Information Science, pp. 92–103. Springer (2015)Google Scholar
  4. 4.
    Ismail, L., Materwala, H., Zeadally, S.: Lightweight blockchain for healthcare. IEEE Access 7, 149935–149951 (2019)CrossRefGoogle Scholar
  5. 5.
    Miao, Y., Li, W., Tian, D., Hossain, M.S., Alhamid, M.F.: Narrowband Internet of Things: simulation and modeling. IEEE Internet Things J. 5(4), 2304–2314 (2017)CrossRefGoogle Scholar
  6. 6.
    Mroue, H., Nasser, A., Hamrioui, S., Parrein, B., Motta-Cruz, E., Rouyer, G.: MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT. In: 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM), pp. 1–5. IEEE (2018)Google Scholar
  7. 7.
    Yang, K., Blaauw, D., Sylvester, D.: Hardware designs for security in ultra-low-power IoT systems: an overview and survey. IEEE Micro 37(6), 72–89 (2017)CrossRefGoogle Scholar
  8. 8.
    Lauridsen, M., Vejlgaard, B., Kovacs, I.Z., Nguyen, H., Mogensen, P.: Interference measurements in the European 868 MHz ISM band with focus on LoRa and SigFox. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2017)Google Scholar
  9. 9.
    Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., Lopez-Soler, J.M.: Integration of LoRaWAN and 4G/5G for the industrial Internet of Things. IEEE Commun. Mag. 56(2), 60–67 (2018)CrossRefGoogle Scholar
  10. 10.
    Fathy, A., Tarrad, I.F., Hamed, H.F.A., Awad, A.I.: Advanced encryption standard algorithm: issues and implementation aspects. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 516–523. Springer (2012)Google Scholar
  11. 11.
    Ali, B., Awad, A.I.: Cyber and physical security vulnerability assessment for IoT-based smart homes. Sensors 18(3), 817 (2018)CrossRefGoogle Scholar
  12. 12.
    Polianytsia, A., Starkova, O., Herasymenko, K.: Survey of the IoT data transmission protocols. In: 2017 4th International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), pp. 369–371. IEEE (2017)Google Scholar
  13. 13.
    Florea, I., Rughinis, R., Ruse, L., Dragomir, D.: Survey of standardized protocols for the Internet of Things. In: 2017 21st International Conference on Control Systems and Computer Science (CSCS), pp. 190–196. IEEE (2017)Google Scholar
  14. 14.
    Solapure, S.S., Kenchannavar, H.: Internet of Things: a survey related to various recent architectures and platforms available. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 2296–2301. IEEE (2016)Google Scholar
  15. 15.
    Babovic, Z.B., Protic, J., Milutinovic, V.: Web performance evaluation for Internet of Things applications. IEEE Access 4, 6974–6992 (2016)CrossRefGoogle Scholar
  16. 16.
    Yassein, M.B., Shatnawi, M.Q., Al-zoubi, D.: Application layer protocols for the Internet of Things: a survey. In: 2016 International Conference on Engineering & MIS (ICEMIS), pp. 1–4. IEEE (2016)Google Scholar
  17. 17.
    Benson, K., Fracchia, C., Wang, G., Zhu, Q., Almomen, S., Cohn, J., D’arcy, L., Hoffman, D., Makai, M., Stamatakis, J., Venkatasubramanian, N.: SCALE: safe community awareness and alerting leveraging the Internet of Things. IEEE Commun. Mag. 53(12), 27–34 (2015)CrossRefGoogle Scholar
  18. 18.
    King, J., Awad, A.I.: A distributed security mechanism for resource-constrained IoT devices. Informatica 40(1), 133–143 (2016)Google Scholar
  19. 19.
    Sultana, T., Wahid, K.A.: Choice of application layer protocols for next generation video surveillance using Internet of video things. IEEE Access 7, 41607–41624 (2019)CrossRefGoogle Scholar
  20. 20.
    Kaedi, S., Doostari, M.A., Ghaznavi-Ghoushchi, M.B.: Low-complexity and differential power analysis (DPA)-resistant two-folded power-aware Rivest-Shamir-Adleman (RSA) security schema implementation for IoT-connected devices. IET Comput. Digital Tech. 12(6), 279–288 (2018)CrossRefGoogle Scholar
  21. 21.
    Alamelu, J., Mythili, A.: Design of IoT based generic health care system. In: 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), pp. 1–4. IEEE (2017)Google Scholar
  22. 22.
    Musaddiq, A., Zikria, Y.B., Hahm, O., Yu, H., Bashir, A.K., Kim, S.W.: A survey on resource management in IoT operating systems. IEEE Access 6, 8459–8482 (2018)CrossRefGoogle Scholar
  23. 23.
    Elrawy, M.F., Awad, A.I., Hamed, H.F.: Intrusion detection systems for IoT-based smart environments: a survey. J. Cloud Comput. 7(1), 21 (2018)CrossRefGoogle Scholar
  24. 24.
    Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The Internet of Things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)CrossRefGoogle Scholar
  25. 25.
    Kougianos, E., Mohanty, S.P., Coelho, G., Albalawi, U., Sundaravadivel, P.: Design of a high-performance system for secure image communication in the Internet of Things. IEEE Access 4, 1222–1242 (2016)CrossRefGoogle Scholar
  26. 26.
    Yeh, K.H.: A secure IoT-based healthcare system with body sensor networks. IEEE Access 4, 10288–10299 (2016)CrossRefGoogle Scholar
  27. 27.
    Elmisery, A.M., Rho, S., Botvich, D.: A fog based middleware for automated compliance with OECD privacy principles in Internet of healthcare things. IEEE Access 4, 8418–8441 (2016)CrossRefGoogle Scholar
  28. 28.
    Monrat, A.A., Schelén, O., Andersson, K.: A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access 7, 117134–117151 (2019)CrossRefGoogle Scholar
  29. 29.
    Kwabena, O.A., Qin, Z., Zhuang, T., Qin, Z.: MSCryptoNet: multi-scheme privacy-preserving deep learning in cloud computing. IEEE Access 7, 29344–29354 (2019)CrossRefGoogle Scholar
  30. 30.
    Li, P., Li, J., Huang, Z., Li, T., Gao, C.Z., Yiu, S.M., Chen, K.: Multi-key privacy-preserving deep learning in cloud computing. Future Gener. Comput. Syst. 74, 76–85 (2017)CrossRefGoogle Scholar
  31. 31.
    Daraghmi, E.Y., Daraghmi, Y.A., Yuan, S.M.: MedChain: a design of blockchain-based system for medical records access and permissions management. IEEE Access 7, 164595–164613 (2019)CrossRefGoogle Scholar
  32. 32.
    Upadhyay, Y., Borole, A., Dileepan, D.: MQTT based secured home automation system. In: 2016 Symposium on Colossal Data Analysis and Networking (CDAN), pp. 1–4. IEEE (2016)Google Scholar
  33. 33.
    Boussada, R., Hamdaney, B., Elhdhili, M.E., Argoubi, S., Saidane, L.A.: A secure and privacy-preserving solution for IoT over NDN applied to e-health. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 817–822. IEEE (2018)Google Scholar
  34. 34.
    Elhoseny, M., Ramírez-González, G., Abu-Elnasr, O.M., Shawkat, S.A., Arunkumar, N., Farouk, A.: Secure medical data transmission model for IoT-based healthcare systems. IEEE Access 6, 20596–20608 (2018)CrossRefGoogle Scholar
  35. 35.
    Tsai, K.L., Huang, Y.L., Leu, F.Y., You, I., Huang, Y.L., Tsai, C.H.: AES-128 based secure low power communication for LoRaWAN IoT environments. IEEE Access 6, 45325–45334 (2018)CrossRefGoogle Scholar
  36. 36.
    Hassan, A.M., Awad, A.I.: Urban transition in the era of the Internet of Things: social implications and privacy challenges. IEEE Access 6, 36428–36440 (2018)CrossRefGoogle Scholar
  37. 37.
    Jin, H., Luo, Y., Li, P., Mathew, J.: A review of secure and privacy-preserving medical data sharing. IEEE Access 7, 61656–61669 (2019)CrossRefGoogle Scholar
  38. 38.
    Yang, Y., He, D., Kumar, N., Zeadally, S.: Compact hardware implementation of a SHA-3 core for wireless body sensor networks. IEEE Access 6, 40128–40136 (2018)CrossRefGoogle Scholar
  39. 39.
    Tao, H., Bhuiyan, M.Z.A., Abdalla, A.N., Hassan, M.M., Zain, J.M., Hayajneh, T.: Secured data collection with hardware-based ciphers for IoT-based healthcare. IEEE Internet Things J. 6(1), 410–420 (2018)CrossRefGoogle Scholar
  40. 40.
    Xu, Z., Xu, C., Liang, W., Xu, J., Chen, H.: A lightweight mutual authentication and key agreement scheme for medical Internet of Things. IEEE Access 7, 53922–53931 (2019)CrossRefGoogle Scholar
  41. 41.
    Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: Blockchain for secure EHRs sharing of mobile cloud based e-health systems. IEEE Access 7, 66792–66806 (2019)CrossRefGoogle Scholar
  42. 42.
    Shahnaz, A., Qamar, U., Khalid, A.: Using blockchain for electronic health records. IEEE Access 7, 147782–147795 (2019)CrossRefGoogle Scholar
  43. 43.
    Kim, H., Kim, S.H., Hwang, J.Y., Seo, C.: Efficient privacy-preserving machine learning for blockchain network. IEEE Access 7, 136481–136495 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Moustafa Mamdouh
    • 1
  • Ali Ismail Awad
    • 2
    • 3
    Email author
  • Hesham F. A. Hamed
    • 1
    • 4
  • Ashraf A. M. Khalaf
    • 1
  1. 1.Department of Communications and Electronics, Faculty of EngineeringMinia UniversityMiniaEgypt
  2. 2.Department of Computer Science, Electrical and Space EngineeringLuleå University of TechnologyLuleåSweden
  3. 3.Faculty of EngineeringAl-Azhar UniversityQenaEgypt
  4. 4.Department of Telecommunications EngineeringEgyptian Russian UniversityCairoEgypt

Personalised recommendations