Advertisement

Combination of Convolutional and Recurrent Neural Networks for Heartbeat Classification

  • Abdelrahman M. ShakerEmail author
  • Manal TantawiEmail author
  • Howida A. ShedeedEmail author
  • Mohamed F. TolbaEmail author
Conference paper
  • 55 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)

Abstract

Electrocardiogram (ECG) plays an essential role in the medical field, it records the electrical activity of the heart over time and provides information about the heart condition. Hence, the cardiologist uses it to detect the abnormalities of the heart and to diagnose the heart diseases. Convolutional Neural Networks (CNNs) have proven their ability in extracting the most important features, Long Short-Term Memory (LSTM) has the capabilities of learning the temporal dependencies between the sequential data. In this paper, a novel method based on the combination of CNN and LSTM is proposed to classify 15 classes of the MIT-BIH dataset automatically without any hand-engineering feature extraction methods. The proposed method consists of data filtering, dynamic technique for heartbeat segmentation, and CNN-LSTM model consists of 12 layers.

Our experimental results of the proposed method achieved promising overall accuracy of 98.16% in classification between 15 classes of the MIT-BIH dataset, which outperforms several heartbeat classification methods.

Keywords

ECG classification Heart diseases Deep learning Convolution Neural Networks (CNN) Long Short-Term Memory (LSTM) 

References

  1. 1.
    World Health Organization: Cardiovascular diseases (CVDs) (2017). http://www.who.int/mediacentre/factsheets/fs317/en/
  2. 2.
    World Health Organization: About cardiovascular diseases (CVDs) (2017). https://www.who.int/cardiovascular_diseases/about_cvd/en/
  3. 3.
    Tantawi, M., Revett, K., Salem, A.B., Tolba, M.F.: Electrocardiogram (ECG): a new burgeoning utility for biometric recognition. In: Hassanien, A., Kim, T.H., Kacprzyk, J., Awad, A. (eds.) Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations. Intelligent Systems Reference Library. Springer, Heidelberg, vol 70, pp. 349–382 (2014)Google Scholar
  4. 4.
    Alfonso, V.X., Tompkins, J.: Detecting ventricular fibrillation. IEEE Trans. Biomed. Eng. 54(1), 174–177 (2007)CrossRefGoogle Scholar
  5. 5.
    Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001)CrossRefGoogle Scholar
  6. 6.
    Kastor, J.A.: Arrhythmias, 2nd edn. W.B. Saunders, London (1994)Google Scholar
  7. 7.
    Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018).  https://doi.org/10.1016/j.compbiomed.2018.03.016CrossRefGoogle Scholar
  8. 8.
    Bakator, M., Radosav, D.: Deep learning and medical diagnosis: a review of literature. Multimodal Technol. Interact. 2, 47 (2018).  https://doi.org/10.3390/mti2030047CrossRefGoogle Scholar
  9. 9.
    Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinf. 18, 851–869 (2017)Google Scholar
  10. 10.
    Zebardast, B., Ghaffari, A., Masdari, M.: A new generalized regression artificial neural networks approach for diagnosing heart disease. Int. J. Innov. Appl. Stud. 4, 679 (2013)Google Scholar
  11. 11.
    Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, vol. 68, no. 1. Springer, Singapore (2019)Google Scholar
  12. 12.
    Karthik, S., Srinivasa Perumal, R., Chandra Mouli, P.V.S.S.R.: Breast cancer classification using deep neural networks (2018).  https://doi.org/10.1007/978-981-10-6680-1_12
  13. 13.
    Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., Wang, J.: Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1, 1–18 (2018)CrossRefGoogle Scholar
  14. 14.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  15. 15.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)CrossRefGoogle Scholar
  16. 16.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997).  https://doi.org/10.1162/neco.1997.9.8.1735CrossRefGoogle Scholar
  17. 17.
    Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation (2016)Google Scholar
  18. 18.
    Kim, M., et al.: Speaker-independent silent speech recognition from flesh-point articulatory movements using an LSTM neural network. IEEE/ACM Trans. Audio Speech Lang. Process. 25(12), 2323–2336 (2017)CrossRefGoogle Scholar
  19. 19.
    Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)CrossRefGoogle Scholar
  20. 20.
    Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)CrossRefGoogle Scholar
  21. 21.
    Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)CrossRefGoogle Scholar
  22. 22.
    Martis, R.J., Acharya, U.R., Mandana, K., Ray, A.K., Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012)CrossRefGoogle Scholar
  23. 23.
    Yazdanian, H., Nomani, A., Yazdchi, M.R.: Autonomous detection of heartbeats and categorizing them by using support vector machines. IEEE (2013)Google Scholar
  24. 24.
    El-Saadawy, H., Tantawi, M., Shedeed, H.A., Tolba, M.F.: Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process. 12(4), 506–513 (2018).  https://doi.org/10.1049/iet-spr.2017.0108CrossRefGoogle Scholar
  25. 25.
    Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)CrossRefGoogle Scholar
  26. 26.
    Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San, T.R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. (2017).  https://doi.org/10.1016/j.compbiomed.2017.08.022CrossRefGoogle Scholar
  27. 27.
    Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (2017).  https://doi.org/10.1109/healthcom.2017.8210784
  28. 28.
    Thakor, N.V., Webster, J.G., Tompkins, W.J.: Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984).  https://doi.org/10.1109/tbme.1984.325393
  29. 29.
  30. 30.
    MIT-BIH Arrhythmias Database. http://www.physionet.org/physiobank/database/mitdb/. Accessed 5 Sept 2019
  31. 31.
    Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI EC57:1998 standard. Association for the Advancement of Medical Instrumentation (1998)Google Scholar
  32. 32.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Computer and Information SciencesAin Shams UniversityCairoEgypt

Personalised recommendations