Advertisement

Remote Sensing Image Classification Based on Convolutional Neural Networks

  • Mayar A. ShafaeyEmail author
  • Mohammed A.-M. Salem
  • Maryam N. Al-Berry
  • Hala M. Ebied
  • Mohammed F. Tolba
Conference paper
  • 169 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)

Abstract

Nowadays, large amounts of high resolution remote-sensing images are acquired daily. However, the satellite image classification is requested for many applications such as modern city planning, agriculture and environmental monitoring. Many researchers introduce and discuss this domain but still, the sufficient and optimum degree has not been reached yet. Hence, this article focuses on evaluating the available and public remote-sensing datasets and common different techniques used for satellite image classification. In recent years, there has been an extensive popularity of supervised deep learning methods in various remote-sensing applications, such as geospatial object detection and land use scene classification. Thus, the experiments, in this article, are carried out based on HSV Color Space using one of the popular deep learning models, Convolution Neural Networks (CNNs), precisely, AlexNet architecture with SVM classifier on 7 different standard datasets. It has reached about 99.7 ± 0.02% of HSV color space for the high resolution dataset, PatternNet. Finally, a comparison with other different techniques is highlighted.

Keywords

HSV color model Deep learning Convolution Neural Networks (CNNs) Remote-sensing Satellite images 

References

  1. 1.
    Zhang, L., Xia, G., Wu, T., Lin, L., Tai, X.: Deep learning for remote sensing image understanding. J. Sens. 2016, 1–2 (2016)Google Scholar
  2. 2.
    Yaniv, O., Isaac, A., Vladimir, F., Daniel, G., Adrian, S.: Compressive sensing hyperspectral imaging by spectral multiplexing with liquid crystal. J. Imaging 5(1), 3 (2019)Google Scholar
  3. 3.
    Roy, B., Lawrence, T., Mahdi, N.: Spectral imaging using a commercial colour-filter array digital camera. In: The Fourteenth Triennial ICOM-CC Meeting, pp. 743–750 (2005)Google Scholar
  4. 4.
    Adam, C.W., Vincent, G.A., Everett, A.H.: Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens. 4(6), 1671–1692 (2012)CrossRefGoogle Scholar
  5. 5.
    Chang, J.-D., Yu, S.-S., Chen, H.-H., Chwei-Shyong, T.: HSV-based color texture image classification using wavelet transform and motif patterns. J. Comput. 20(4), 63–69 (2010)Google Scholar
  6. 6.
    Elhadi, A., Onisimo, M., Denis, R.: Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol. Manag. 18(3), 281–296 (2010)CrossRefGoogle Scholar
  7. 7.
    Shaheera, R., Nicolas, D.: A split-and-merge approach for hyperspectral band selection. IEEE Geosci. Remote Sens. Lett. 14(8), 1378–1382 (2017)CrossRefGoogle Scholar
  8. 8.
    AID Dataset. http://www.lmars.whu.edu.cn/xia/AID-project.html. Accessed 16 Feb 2018
  9. 9.
    PatternNet Dataset. https://sites.google.com/view/zhouwx/dataset?authuser=0. Accessed 16 Feb 2018
  10. 10.
    UC-Merceed Land Use Dataset. http://weegee.vision.ucmerced.edu/datasets/landuse.html. Accessed 16 Feb 2018
  11. 11.
    WHU-RS19 Dataset. https://www.mediafire.com/file/o88sj9zbv7jau26/RS19.rar/file. Accessed 16 Mar 2020
  12. 12.
    SIRI-WHU Dataset. http://www.lmars.whu.edu.cn/prof_web/zhongyanfei/e-code.html. Accessed 16 Feb 2018
  13. 13.
  14. 14.
  15. 15.
    Zhou, Z., Edoardo, P., Melba, M.C., James, C.T.: An active learning framework for hyperspectral image classification using hierarchical segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(2), 640–654 (2016)CrossRefGoogle Scholar
  16. 16.
    Salem, M.A.-M., Appel, M., Winkler, F., Meffert, B.: FPGA-based smart camera for 3D wavelet-based image segmentation. In: 2nd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC, pp. 1–8 (2008).  https://doi.org/10.1109/icdsc.2008.4635720
  17. 17.
    Salem, M.A.-M., Alaa, A., Alaa, S., Marwa, S.: Recent survey on medical image segmentation. In: Computer Vision: Concepts, Methodologies, Tools, and Applications, pp. 129–169. IGI Global (2018).  https://doi.org/10.4018/978-1-5225-5204-8.ch006
  18. 18.
    Zhao, B., Zhong, Y., Zhang, L.: A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 116, 73–85 (2016)CrossRefGoogle Scholar
  19. 19.
    Olshausen, B.A., Field, D.J.: Sparse coding with an over complete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)CrossRefGoogle Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations, pp. 1–13 (2015)Google Scholar
  21. 21.
    Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhong, Y., Fei, F., Zhang, L.: Large patch convolutional neural networks for the scene classification of high spatial resolution imagery. Appl. Remote Sens. 10(2), 025006 (2016)CrossRefGoogle Scholar
  23. 23.
    Shafaey, M.A., Salem, M.A.-M., Ebied, H.M., Al-Berry, M., Tolba, M.F.: Deep learning for satellite image classification. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, vol. 4, pp. 383–391 (2019)Google Scholar
  24. 24.
    Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the International Conference on Learning Representations, pp. 1–16 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Computers and Information SciencesAin Shams UniversityCairoEgypt
  2. 2.Faculty of Media Engineering and TechnologyGerman University in CairoCairoEgypt

Personalised recommendations