Advertisement

Deep Learning Based Kinematic Modeling of 3-RRR Parallel Manipulator

  • Abdelrahman Sayed Sayed
  • Ahmad Taher AzarEmail author
  • Zahra Fathy Ibrahim
  • Habiba A. Ibrahim
  • Nada Ali Mohamed
  • Hossam Hassan Ammar
Conference paper
  • 178 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)

Abstract

This paper presents a novel low cost design for a 3-RRR Planar Parallel Manipulator (PPM). These manipulators proved their superiority over serial manipulators due to their speed, precision and smaller work space where the work space area is accounted for in the design to ensure that the robot is performing its task in a smooth and simple way without getting into any singularity points. The challenge with PPM is to obtain the kinematic constraint equations of the manipulator due to their complex non-linear behavior. Screw theory is a new approach that is used to compute the direct and inverse kinematics based on the relation between each link and its’ predecessor. The design is then inserted into ADAMS to study its dynamical behavior and to obtain a data set that would be used in analyzing the system in MATLAB. A Neuro-Fuzzy Inference System (NFIS) model was constructed in order to predict the end-effector position inside the work space and it is tuned with Particle swarm optimization (PSO) and Genetic algorithm (GA).

Keywords

Planar Parallel Manipulator (PPM) Kinematic analysis ADAMS Neural networks Neuro-Fuzzy Inference System Particle Swarm Optimization (PSO) Genetic Algorithm (GA) 

References

  1. 1.
    Angel, L., Pérez, M., Díaz-Quintero, C., Mendoza, C.: Adams/matlab co-simulation: dynamic systems analysis and control tool. In: Applied Mechanics and Materials, vol. 232, pp. 527–531 (2012)Google Scholar
  2. 2.
    Arora, J.: Genetic algorithms for optimum design. In: Introduction to Optimum Design, pp. 643–655 (2004)Google Scholar
  3. 3.
    Azar, A.T., Zhu, Q., Khamis, A., Zhao, D.: Control design approaches for parallel robot manipulators: a review. Int. J. Model. Identif. Control 28(3), 199–211 (2017)CrossRefGoogle Scholar
  4. 4.
    Azar, A.T., Aly, A.M., Sayed, A.S., Radwan, M.E., Ammar, H.H.: Neuro-fuzzy system for 3-DOF parallel robot manipulator. In: 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES), vol. 1, pp. 1–5 (2019)Google Scholar
  5. 5.
    Azar, A.T., Ali, N., Makarem, S., Diab, M.K., Ammar, H.H.: Design and implementation of a ball and beam PID control system based on metaheuristic techniques. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 313–325. Springer, Cham (2020)Google Scholar
  6. 6.
    Azar, A.T., Sayed, A.S., Shahin, A.S., Elkholy, H.A., Ammar, H.H.: PID controller for 2-DOFS twin rotor MIMO system tuned with particle swarm optimization. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 229–242. Springer, Cham (2020) Google Scholar
  7. 7.
    Boudreau, R., Nokleby, S.: Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory. Mech. Mach. Theory 56, 138–155 (2012)CrossRefGoogle Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley/Longman Publishing Co., Inc., Upper Saddle River (1989)zbMATHGoogle Scholar
  9. 9.
    Gough, V.: Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Auto Div. Inst. Mech. Eng. 171, 392–395 (1957)Google Scholar
  10. 10.
    Hamdoun, O., El Bakkali, L., Baghli, F.Z.: Analysis and optimum kinematic design of a parallel robot. Procedia Eng. 181, 214–220 (2017)CrossRefGoogle Scholar
  11. 11.
    Kubela, T., Pochyly, A., Singule, V.: Advanced tools for multi-body simulation and design of control structures applied in robotic system development. Solid State Phenom. 164, 387–391 (2010)CrossRefGoogle Scholar
  12. 12.
    Kucuk, S.: Dexterous workspace optimization for a new parallel robot manipulator. J. Mech. Robot. 10(6), 8 p. (2018). Article no. 064503 Google Scholar
  13. 13.
    Liu, C., Cao, G., Qu, Y.: Safety analysis via forward kinematics of delta parallel robot using machine learning. Saf. Sci. 117, 243–249 (2019)CrossRefGoogle Scholar
  14. 14.
    Luces, M., Mills, J.K., Benhabib, B.: A review of redundant parallel kinematic mechanisms. J. Intell. Robot. Syst. 86(2), 175–198 (2017)CrossRefGoogle Scholar
  15. 15.
    Merlet, J.: Parallel Robots, vol. 74. Springer, Sophia-Antipolis (2012)zbMATHGoogle Scholar
  16. 16.
    Mitchell, M., Toroczkai, Z.: Complexity: a guided tour. Phys. Today 63, 47 (2010)Google Scholar
  17. 17.
    Müller, A.: Redundant actuation of parallel manipulators. In: Parallel Manipulators, Towards New Applications. IntechOpen (2008)Google Scholar
  18. 18.
    Pierrot, F., Reynaud, C., Fournier, A.: Delta: a simple and efficient parallel robot. Robotica 8(2), 105–109 (1990)CrossRefGoogle Scholar
  19. 19.
    Seibel, A., Schulz, S., Schlattmann, J.: On the direct kinematics problem of parallel mechanisms. J. Robot. 2018, 1–9 (2018). Article ID 2412608.  https://doi.org/10.1155/2018/2412608
  20. 20.
    Shi, H., Su, H.J.: An analytical model for calculating the workspace of a flexure hexapod nanopositioner. J. Mech. Robot. 5(4), 041,009 (2013)CrossRefGoogle Scholar
  21. 21.
    Shi, H., Su, H.J., Dagalakis, N.: A stiffness model for control and analysis of a mems hexapod nanopositioner. Mech. Mach. Theory 80, 246–264 (2014)CrossRefGoogle Scholar
  22. 22.
    Talaslioglu, T.: Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology. Front. Struct. Civ. Eng. 13(4), 863–889 (2019)CrossRefGoogle Scholar
  23. 23.
    Xie, F., Liu, X.J.: Design and development of a high-speed and high-rotation robot with four identical arms and a single platform. J. Mech. Robot. 7(4), 041,015 (2015)CrossRefGoogle Scholar
  24. 24.
    Xu, Q., Li, Y.: A 3-PRS parallel manipulator control based on neural network. In: Liu, D., Fei, S., Hou, Z.G., Zhang, H., Sun, C. (eds.) Advances in Neural Networks - ISNN 2007, pp. 757–766. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Yang, X.S.: Optimization and Metaheuristic Algorithms in Engineering, pp 1–23 (2013)Google Scholar
  26. 26.
    Zhang, Z., Shao, Z., Wang, L.: Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion. Mech. Mach. Theory 130, 86–108 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdelrahman Sayed Sayed
    • 1
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
    Email author
  • Zahra Fathy Ibrahim
    • 1
    • 2
  • Habiba A. Ibrahim
    • 1
    • 2
  • Nada Ali Mohamed
    • 1
    • 2
  • Hossam Hassan Ammar
    • 1
    • 2
  1. 1.Smart Engineering Systems Research Center (SESC)Nile UniversitySheikh Zayed CityEgypt
  2. 2.School of Engineering and Applied SciencesNile University Campus6th of October CityEgypt
  3. 3.Robotics and Internet-of-Things Lab (RIOTU)Prince Sultan UniversityRiyadhSaudi Arabia
  4. 4.Faculty of Computers and Artificial IntelligenceBenha UniversityBanhaEgypt

Personalised recommendations