Experimental Kinematic Modeling of 6-DOF Serial Manipulator Using Hybrid Deep Learning

  • Nada Ali Mohamed
  • Ahmad Taher AzarEmail author
  • Nada Elsayed Abbas
  • Mamdouh Ahmed Ezzeldin
  • Hossam Hassan Ammar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1153)


According to its significance, robotics is always an area of interest for research and further development. While robots have varying types, design and sizes, the six degrees of freedom (DOF) serial manipulator is a famous robotic arm that has a vast areas of applications, not only in industrial application, but also in other fields such as medical and exploration applications. Accordingly, control and optimization of such robotic arm is crucial and needed. In this paper, different analyses are done on the chosen design of robotic arm. Forward kinematics are calculated and validated, then simulation using MSC ADAMS is done, followed by experimentation and tracking using Microsoft Kinect. Two approaches are used in this study: adaprive neuro fuzzy (ANF) system optimized by simulated annealing (SA) algorithm and convolutional neural networks (CNNs) optimized by adaptive moment estimation (Adam). The same inputs are given to both models and their results are compared in order to determine the best fit algorithm for higher precision in the given robotic model. The findings have shown that the accuracy of CNNs is higher. Furthermore, this advantage has a higher cost for the time of computation than for NFs with SA.


Serial manipulator Neuro-Fuzzy Control (NFC) Convolutional Neural Network (CNN) Simulated annealing (SA) Adaptive moment estimation (Adm) 


  1. 1.
    Ahmed, A.A., Darwish, S.M.S., El-Sherbiny, M.M.: A novel automatic CNN architecture design approach based on genetic algorithm. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 473–482. Springer, Heidelberg (2019)Google Scholar
  2. 2.
    Ammar, H.H., Azar, A.T.: Robust path tracking of mobile robot using fractional order PID controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, M.F. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019). pp. 370–381. Springer, Cham (2020)Google Scholar
  3. 3.
    Azar, A.T., Ammar, H.H., Mliki, H.: Fuzzy logic controller with color vision system tracking for mobile manipulator robot. In: International Conference on Advanced Machine Learning Technologies and Applications, pp. 138–146. Springer, Heidelberg (2018)Google Scholar
  4. 4.
    Azar, A.T., Aly, A.M., Sayed, A.S., Radwan, M.E., Ammar, H.H.: Neuro-fuzzy system for 3-DOF parallel robot manipulator. In: 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES), vol. 1, pp. 1–5. IEEE (2019)Google Scholar
  5. 5.
    Azar, A.T., Ammar, H.H., Ibrahim, Z.F., Ibrahim, H.A., Mohamed, N.A., Taha, M.A.: Implementation of PID controller with PSO tuning for autonomous vehicle. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 288–299. Springer, Heidelberg (2019)Google Scholar
  6. 6.
    Braga, J.R., Velho, H.F., Conte, G., Doherty, P., Shiguemori, É.H.: An image matching system for autonomous UAV navigation based on neural network. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1–6. IEEE (2016)Google Scholar
  7. 7.
    Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:170404861 (2017)
  8. 8.
    Mamlook, R., Ahamed, T.I., Maqbool, S.D., Al-Ammar, E.A., Malik, N.: A fuzzy simulated annealing algorithm for minimizing consumer electricity bill under demand response. Int. J. Comput. Sci. Inf. Secur. 14(11), 144 (2016)Google Scholar
  9. 9.
    Moeys, D.P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil, D., Kerr, D., Delbrück, T.: Steering a predator robot using a mixed frame/event-driven convolutional neural network. In: 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), pp. 1–8. IEEE (2016)Google Scholar
  10. 10.
    Pandey, A., Parhi, D.R.: Autonomous mobile robot navigation in cluttered environment using hybrid takagi-sugeno fuzzy model and simulated annealing algorithm controller. World J. Eng. 13(5), 431–440 (2016)CrossRefGoogle Scholar
  11. 11.
    Panigrahi, P.K., Ghosh, S., Parhi, D.R.: Navigation of autonomous mobile robot using different activation functions of wavelet neural network. Arch. Control Sci. 25(1), 21–34 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pérez, L., Rodríguez, Í., Rodríguez, N., Usamentiaga, R., García, D.F.: Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3), 335 (2016)CrossRefGoogle Scholar
  13. 13.
    Ran, L., Zhang, Y., Zhang, Q., Yang, T.: Convolutional neural network-based robot navigation using uncalibrated spherical images. Sensors 17(6), 1341 (2017)CrossRefGoogle Scholar
  14. 14.
    Sawaqed, L., Al-Ali, A.I., Hatamleh, K.S., Jaradat, M.A.: Modeling and simulation of a moving robotic arm mounted on wheelchair. In: 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), pp. 1–5. IEEE (2017)Google Scholar
  15. 15.
    Serrezuela, R.R., Chavarro, A.F.C., Cardozo, M.A.T., Toquica, A.L., Martinez, L.F.O.: Kinematic modelling of a robotic arm manipulator using MATLAB. ARPN J. Eng. Appl. Sci. 12(7), 2037–2045 (2017)Google Scholar
  16. 16.
    Soliman, M., Azar, A.T., Saleh, M.A., Ammar, H.H.: Path planning control for 3-Omni fighting robot using PID and fuzzy logic controller. In: Hassanien, A.E., Azar, A.T., Gaber, T., Bhatnagar, R., Tolba, F.M. (eds.) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2019), pp. 442–452. Springer, Cham (2020)Google Scholar
  17. 17.
    Li, W.: Neuro-fuzzy systems for intelligent robot navigation and control under uncertainty. In: Proceedings of 1995 IEEE International Conference on Fuzzy Systems, vol. 4, pp. 1747–1754 (1995).
  18. 18.
    Yang, J., Yu, L., Wang, L., Wang, Z., Zhuang, Z.: Dynamic characteristics analysis based on ADAMS for general robotic arm of minimally invasive surgical robot. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 854–859. IEEE (2015)Google Scholar
  19. 19.
    Zhou, L., Bai, S., Hansen, M.R.: Design optimization on the drive train of a light-weight robotic arm. Mechatronics 21(3), 560–569 (2011)CrossRefGoogle Scholar
  20. 20.
    Zhu, Q., Azar, A.T.: Complex System Modelling and Control Through Intelligent Soft Computations, Studies in Fuzziness and Soft Computing, vol. 319, Berlin, Germany (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nada Ali Mohamed
    • 1
  • Ahmad Taher Azar
    • 2
    • 3
    Email author
  • Nada Elsayed Abbas
    • 1
  • Mamdouh Ahmed Ezzeldin
    • 1
  • Hossam Hassan Ammar
    • 1
  1. 1.Smart Engineering Systems Research Center (SESC)Nile UniversitySheikh Zayed City, GizaEgypt
  2. 2.Robotics and Internet of Things LabPrince Sultan UniversityRiyadhSaudi Arabia
  3. 3.Faculty of Computers and Artificial IntelligenceBenha UniversityBanhaEgypt

Personalised recommendations