Advertisement

Gas Turbine Performance for Different Burner Technologies

  • Medhat A. NemitallahEmail author
  • Ahmed A. Abdelhafez
  • Mohamed A. Habib
Chapter
  • 20 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 122)

Abstract

Currently, fossil fuel combustion is the chief source of energy required for producing power.

Notes

Acknowledgements

The authors wish to acknowledge the support received from King Fahd University of Petroleum & Minerals under Grant number BW191002 for the preparation of this book chapter.

References

  1. 1.
    Hoeven MV (2011) CO2 emission from fuel combustion. IEA, Paris, France, pp 12–27Google Scholar
  2. 2.
    Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103(39):14288–14293CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Oh J, Noh D (2012) Laminar burning velocity of oxy-methane flames in atmospheric condition. Energy 45:669–675CrossRefGoogle Scholar
  5. 5.
    Ghoniem AF (2011) Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37:15–51CrossRefGoogle Scholar
  6. 6.
    Habib MA, Nemitallah M, Ben-Mansour R (2013) Recent development in oxy-combustion technology and its applications to gas turbine combustors and ITM reactors. Energy Fuels 27(1):2–19CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Warnatz J, Mass U, Dibble RW (1996) Combustion. Springer, New York, Chap. 17 Google Scholar
  9. 9.
    Taamallah S, Chakroun W, Watanabe H, Shanbhogue J, Ghoniem AF (2017) On the characteristic flow and flame times for scaling oxy and air flame stabilization modes in premixed swirl combustion. Proc Combust Inst 36(3):3799–3807CrossRefGoogle Scholar
  10. 10.
    Kim K (2016) Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor. Combust Flame 171:137–151CrossRefGoogle Scholar
  11. 11.
    Runyon J, Marsh R, Bowen P, Pugh D, Giles A, Morris S (2018) Lean methane flame stability in a premixed generic swirl burner: isothermal flow and atmospheric combustion characterization. Exp Thermal Fluid Sci 92:125–140CrossRefGoogle Scholar
  12. 12.
    Li B, Shi B, Zhao X, Ma K, Xie D, Zhao D, Li J (2018) Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: operation limits and combustion instability. Exp Thermal Fluid Sci 90:115–124CrossRefGoogle Scholar
  13. 13.
    Nemitallah MA, Rashwan SS, Mansir B, Abdelhafez A, Habib MA (2018) Review of novel combustion techniques for clean power production in gas turbines. Energy Fuels 32(2):979–1004CrossRefGoogle Scholar
  14. 14.
    Rashwan SS, Nemitallah MA, Habib MA (2016) Review on premixed combustion technology: stability, emission control, applications, and numerical case study. Energy Fuels 30(12):9981–10014CrossRefGoogle Scholar
  15. 15.
    Kutne P, Kapadia K, Meier W, Aigner M (2011) Experimental analysis of the combustion behavior of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33:3383–3390CrossRefGoogle Scholar
  16. 16.
    Amato A, Hudak B, D’Carlo P, Noble D, Scarborough D, Seitzman J, Lieuwen T (2011) Methane oxy-combustion for low CO2 cycles: blow-off measurements and analysis. J Eng Gas Turbines Power 33:061503–1Google Scholar
  17. 17.
    Peng Q, Jiaqiang E, Zhang Z, Hu W, Zhao X (2018) Investigation on the effects of front-cavity on flame location and thermal performance of a cylindrical micro combustor. Appl Therm Eng 130:541–551Google Scholar
  18. 18.
    Peng Q, Jiaqiang E, Chen J, Zuo W, Zhao X, Zhang Z (2018) Investigations on effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Convers Manag 155:276–286Google Scholar
  19. 19.
    Zuo W, Jiaqiang E, Peng Q, Zhao X, Zhang Z (2017) Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system. Energy 122:408–419Google Scholar
  20. 20.
    Zuo W, Jiaqiang E, Peng Q, Zhao X, Zhang Z (2017) Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness. Appl Therm Eng 113:1011–1020Google Scholar
  21. 21.
  22. 22.
  23. 23.
    Li H, Yan J, Yan J, Anheden M (2009) Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Appl Energy 86(2):202–213CrossRefGoogle Scholar
  24. 24.
    Joshi ND, Epstein MJ, Durlak S, Marakovits S, Sabla PE (1994) Development of a fuel air premixer for aero-derivative dry low emissions combustors. In: International gas turbine and aeroengine congress and exposition, vol 94-NaN-253, pp 1–9Google Scholar
  25. 25.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35(4):293–364CrossRefGoogle Scholar
  26. 26.
    Xie Y, Wang J, Zhang M, Gong J, Jin W, Huang Z (2013) Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO2. Energy Fuels 27(10):6231–6237CrossRefGoogle Scholar
  27. 27.
    Oh J, Noh D (2012) Laminar burning velocity of oxy-methane flames in atmospheric condition. Energy 45(1):669–675CrossRefGoogle Scholar
  28. 28.
    Konnov AA, Dyakov IV (2004) Measurement of propagation speeds in adiabatic flat and cellular premixed flames of C2H6 + O2 + CO2. Combust Flame 136:371–376CrossRefGoogle Scholar
  29. 29.
    Konnov AA, Dyakov IV (2007) Experimental study of adiabatic cellular premixed flames of methane (ethane, propane) + oxygen + carbon dioxide mixtures. Combust Sci Technol 179(4):747–765CrossRefGoogle Scholar
  30. 30.
    Konnov AA, Meuwissen RJ, De Goey LPH (2011) The temperature dependence of the laminar burning velocity of ethanol flames. Proc Combust Inst 33(1):1011–1019CrossRefGoogle Scholar
  31. 31.
    Gu X, Huang Z, Wu S, Li Q (2010) Laminar burning velocities and flame instabilities of butanol isomers-air mixtures. Combust Flame 157(12):2318–2325CrossRefGoogle Scholar
  32. 32.
    Van Lipzig JPJ, Nilsson EJK, De Goey LPH, Konnov AA (2011) Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures. Fuel 90(8):2773–2781CrossRefGoogle Scholar
  33. 33.
    Kaskan WE (1957) The dependence of flame temperature on mass burning velocity. Symp Combust 6(1):134–143CrossRefGoogle Scholar
  34. 34.
    Van Maaren A, Thung DS, De Goey LPH (1994) Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust Sci Technol 96(4–6):327–344CrossRefGoogle Scholar
  35. 35.
    Metghalchi M, Keck JC (1980) Laminar burning velocity of propane-air mixtures at high temperature and pressure. Combust Flame 38:143–154CrossRefGoogle Scholar
  36. 36.
    Liao SY, Jiang DM, Huang ZH, Zeng K, Cheng Q (2007) Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Appl Therm Eng 27(2–3):374–380CrossRefGoogle Scholar
  37. 37.
    Galmiche B, Halter F, Foucher F, Dagaut P (2011) Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels 25(3):948–954CrossRefGoogle Scholar
  38. 38.
    Yi B, Zhang L, Huang F, Mao Z, Zheng C (2014) Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere. Appl Energy 132:349–357CrossRefGoogle Scholar
  39. 39.
    Toporov D, Bocian P, Heil P, Kellermann A, Stadler H, Tschunko S, Förster M, Kneer R (2008) Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combust Flame 155(4):605–618CrossRefGoogle Scholar
  40. 40.
    Khare SP, Wall TF, Farida AZ, Liu Y, Moghtaderi B, Gupta RP (2008) Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel 87(7):1042–1049CrossRefGoogle Scholar
  41. 41.
    Khalil AEE, Gupta AK (2017) Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion. Appl Energy 204:303–317CrossRefGoogle Scholar
  42. 42.
    Shroll AP, Shanbhogue SJ, Ghoniem AF (2012) Dynamic-stability characteristics of premixed methane oxy-combustion. J Eng Gas Turbines Power 134(5):51504CrossRefGoogle Scholar
  43. 43.
    Kutne P, Kapadia BK, Meier W, Aigner M (2011) Experimental analysis of the combustion behaviour of oxyfuel flames in a gas turbine model combustor. Proc Combust Inst 33(2):3383–3390CrossRefGoogle Scholar
  44. 44.
    Song Y, Zou C, He Y, Zheng C (2015) The chemical mechanism of the effect of CO2 on the temperature in methane oxy-fuel combustion. Int J Heat Mass Transf 86:622–628CrossRefGoogle Scholar
  45. 45.
    Oh J, Noh D, Lee E (2013) The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace. Appl Energy 112:350–357CrossRefGoogle Scholar
  46. 46.
    Liu CY, Chen G, Sipöcz N, Assadi M, Bai XS (2012) Characteristics of oxy-fuel combustion in gas turbines. Appl Energy 89(1):387–394CrossRefGoogle Scholar
  47. 47.
    Yin C, Yan J (2016) Oxy-fuel combustion of pulverized fuels: combustion fundamentals and modeling. Appl Energy 162:742–762CrossRefGoogle Scholar
  48. 48.
    Rashwan SS, Ibrahim AH, Abou-Arab TW, Nemitallah MA, Habib MA (2016) Experimental investigation of partially premixed methane-air and methane-oxygen flames stabilized over a perforated-plate burner. Appl Energy 169:126–137CrossRefGoogle Scholar
  49. 49.
    Ramadan IA, Ibrahim AH, Abou-Arab TW, Rashwan SS, Nemitallah MA, Habib MA (2016) Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames. Appl Energy 178:19–28CrossRefGoogle Scholar
  50. 50.
    Nemitallah MA, Habib MA (2013) Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Appl Energy 111:401–415CrossRefGoogle Scholar
  51. 51.
    Brohez S, Delvosalle C, Marlair G (2004) A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire Saf J 39(5):399–411CrossRefGoogle Scholar
  52. 52.
    Carr NL, Kobayashi R, Burrows DB (1954) Viscosity of hydrocarbon gases under pressure. J Pet Technol 6(10):47–55CrossRefGoogle Scholar
  53. 53.
    Marsh R, Runyon J, Giles A, Morris S, Pugh D, Valera-Medina A, Bowen P (2017) Premixed methane oxycombustion in nitrogen and carbon dioxide atmospheres: measurement of operating limits, flame location and emissions. Proceedings of the Combustion Institute. Proc Combust Inst 36(3):3949–3958Google Scholar
  54. 54.
    Li M, Tong Y, Thern M, Klingmann J (2017) Investigation of methane oxy-fuel combustion in a swirl-stabilised gas turbine model combustor. Energies 10(5)Google Scholar
  55. 55.
    Cengel YA, Boles MA (2015) Thermodynamics: an engineering approach 8th ednGoogle Scholar
  56. 56.
    Habib MA, Rashwan SS, Nemitallah MA, Abdelhafez A (2017) Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor. Appl Energy 189:177–186CrossRefGoogle Scholar
  57. 57.
    Veynante D, Vervisch L (2002) Turbulent combustion modeling. Prog Energy Combust Sci 28:193–266CrossRefGoogle Scholar
  58. 58.
  59. 59.
    Kewlani G, Supervisor T (2014) Large eddy simulations of premixed turbulent flame dynamics: combustion modeling, validation and analysis. http://hdl.handle.net/1721.1/93863
  60. 60.
    Emanuel F, Pérez H (2011) Subfilter scale modelling for large eddy simulation of lean hydrogen-enriched turbulent premixed combustion. Thesis, pp 1–186Google Scholar
  61. 61.
    Herná FE, Groth CPT, Gü L (2014) Large-eddy simulation of lean hydrogen–methane turbulent premixed flames in the methane-dominated regime. Int J Hydrogen Energy 39:7147–7157CrossRefGoogle Scholar
  62. 62.
    Marsh R, Runyon J, Giles A, Morris S, Pugh D, Valera-Medina A et al (2017) Premixed methane oxycombustion in nitrogen and carbon dioxide atmospheres: measurement of operating limits, flame location and emissions. Proc Combust Inst 36:3949–3958CrossRefGoogle Scholar
  63. 63.
    Weigand P, Meier W, Duan XR, Stricker W, Aigner M (2006) Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions. Combust Flame.  https://doi.org/10.1016/j.combustflame.2005.07.010
  64. 64.
    Meier W, Duan XR, Weigand P (2006) Investigations of swirl flames in a gas turbine model combustor: II. Turbulence–chemistry interactions. Combust Flame.  https://doi.org/10.1016/j.combustflame.2005.07.009
  65. 65.
    Taamallah S, LaBry ZA, Shanbhogue SJ, Habib MA, Ghoniem AF (2015) Correspondence between “Stable” flame macrostructure and thermo-acoustic instability in premixed swirl-stabilized turbulent combustion. J Eng Gas Turbines Power 137:071505.  https://doi.org/10.1115/1.4029173CrossRefGoogle Scholar
  66. 66.
    Taamallah S, Labry ZA, Shanbhogue SJ, Ghoniem AF (2015) Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc Combust Inst 35:3273–3282CrossRefGoogle Scholar
  67. 67.
    Abdelhafez A, Rashwan SS, Nemitallah MA, Habib MA (2018) Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. Appl Energy 215:63–74.  https://doi.org/10.1016/j.apenergy.2018.01.097CrossRefGoogle Scholar
  68. 68.
    Jourdaine P, Mirat C, Caudal J, Lo A, Schuller T (2017) A comparison between the stabilization of premixed swirling CO2-diluted methane oxy-flames and methane/air flames. Fuel 201:156–164CrossRefGoogle Scholar
  69. 69.
  70. 70.
  71. 71.
    Li H, Yan J, Yan J, Anheden M (2009) Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Appl Energy 86:202–213CrossRefGoogle Scholar
  72. 72.
    Cao Y, He B, Ding G, Su L, Duan Z (2016) Performance modeling of integrated chemical looping air separation and IGCC with CO2 capture. Energy Fuels 30:9953–9961CrossRefGoogle Scholar
  73. 73.
    Nemitallah MA (2016) A study of methane oxy-combustion characteristics inside a modified design button-cell membrane reactor utilizing a modified oxygen permeation model for reacting flows. J Nat Gas Sci Eng 28:61–73CrossRefGoogle Scholar
  74. 74.
    Nemitallah MA, Habib MA, Mezghani K (2015) Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 84:600–611CrossRefGoogle Scholar
  75. 75.
    Habib MA, Salaudeen SA, Nemitallah MA, Ben-Mansour R, Mokheimer EMA (2016) Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. Energy 96:654–665CrossRefGoogle Scholar
  76. 76.
    Williams TC, Shaddix CR, Schefer RW (2007) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust Sci Technol 180:64–88CrossRefGoogle Scholar
  77. 77.
    Zhang J, Mi J, Li P, Wang F, Dally BB (2015) Moderate or intense low-oxygen dilution combustion of methane diluted by CO2 and N2. Energy Fuels 29:4576–4585CrossRefGoogle Scholar
  78. 78.
    Nemitallah MA, Rashwan SS, Mansir IB, Abdelhafez A, Habib MA (2018) Review of novel combustion techniques for clean power production in gas turbines. Energy & Fuels 32(2):979–1004Google Scholar
  79. 79.
    Amato A, Hudak B, D’Carlo P, Noble D, Scarborough D, Seitzman J, Lieuwen T (2011) J Eng Gas Turbines Power 133:061503CrossRefGoogle Scholar
  80. 80.
    Jerzak W, Kuźnia M (2016) Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J Nat Gas Sci Eng 29:46–54CrossRefGoogle Scholar
  81. 81.
    Ditaranto M, Hals J (2006) Combustion instabilities in sudden expansion oxy-fuel flames. Combust Flame 146:493–512CrossRefGoogle Scholar
  82. 82.
    Shroll AP, Shanbhogue SJ, Ghoniem AF (2012) Dynamic-stability characteristics of premixed methane oxy-combustion. J Eng Gas Turbines Power 134:051504CrossRefGoogle Scholar
  83. 83.
    Joshi ND, Epstein MJ, Durlak S, Marakovits S, Sabla PE (1994) Development of a fuel air premixer for aero-derivative dry low emissions combustors. International Gas Turbine Aeroengine Congr Expo 94-GT-253:1–9Google Scholar
  84. 84.
    Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35:293–364CrossRefGoogle Scholar
  85. 85.
    Taamallah S, Shanbhogue SJ, Ghoniem AF (2016) Turbulent flame stabilization modes in premixed swirl combustion: physical mechanism and Karlovitz number-based criterion. Combust Flame 166:19–33CrossRefGoogle Scholar
  86. 86.
    Kaskan WE (1957) The dependence of flame temperature on mass burning velocity. Symp Combust 6:134–143CrossRefGoogle Scholar
  87. 87.
    Van Maaren A, Thung DS, De Goey LPH (1994) Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combust Sci Technol 96:327–344CrossRefGoogle Scholar
  88. 88.
    Galmiche B, Halter F, Foucher F, Dagaut P (2011) Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels 25:948–954CrossRefGoogle Scholar
  89. 89.
    Peng Q, Chen J, Zuo W, Zhao X, Zhang Z (2018) Investigations on effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Convers Manag 155:276–286CrossRefGoogle Scholar
  90. 90.
    Zuo W, Peng Q, Zhao X, Zhang Z (2017) Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system. Energy 122:408–419CrossRefGoogle Scholar
  91. 91.
    Zuo W, Peng Q, Zhao X, Zhang Z (2017) Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness. Appl Therm Eng 113:1011–1020CrossRefGoogle Scholar
  92. 92.
    Bollinger M, Williams T (1948) Effect of Reynolds umber in the turbulent-flow range on flame speeds of bunsen-burner flames. Flight Propulsion Research Laboratory Cleveland, Ohio, September 1948Google Scholar
  93. 93.
    Joshi ND, Epstein MJ, Durlak S, Marakovits S (1994) Development of a fuel air pre-mixer for aero-derivative dry low emissions combustors. ASME Pap 94-GT 4:253Google Scholar
  94. 94.
    Brohez S, Delvosalle C, Marlair G (2004) A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire Saf J 39:399–411CrossRefGoogle Scholar
  95. 95.
    Funke HH-W, Beckmann N, Keinz J, Abanteriba S (2017) Numerical and experimental evaluation of a dual-fuel dry-low-nox micromix combustor for industrial gas turbine applications. In: Proceedings of the ASME turbo ExpoGoogle Scholar
  96. 96.
    Haj Ayed A, Kusterer K, Funke HHW, Keinz J, Striegan C, Bohn D (2015) Experimental and numerical investigations of the dry-low-NOx hydrogen micromix combustion chamber of an industrial gas turbine. Propuls Power ResGoogle Scholar
  97. 97.
    Asai T, Dodo S, Karishuku M, Yagi N, Akiyama Y, Hayashi A (2015) Performance of multiple-injection dry low-NOx combustors on hydrogen-rich syngas fuel in an IGCC pilot plant. J Eng Gas Turbines PowerGoogle Scholar
  98. 98.
    Liu H, Zailani R, Gibbs B (2005) Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel 84:833–840CrossRefGoogle Scholar
  99. 99.
    Lupion M, Diego R, Loubeau L, Navarrete B (2011) CIUDEN CCS project: status of the CO2 capture technology development plant in power generation. Energy Procedia 4:5639–5646.  https://doi.org/10.1016/j.egypro.2011.02.555CrossRefGoogle Scholar
  100. 100.
    Wall TF (2007) Combustion processes for carbon capture. Proc Combust Inst 31:31–47.  https://doi.org/10.1016/j.proci.2006.08.123CrossRefGoogle Scholar
  101. 101.
    Croiset E, Thambimuthu KV (2001) NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel 80:2117–2121.  https://doi.org/10.1016/S0016-2361(00)00197-6CrossRefGoogle Scholar
  102. 102.
    Hong J, Kirchen P, Ghoniem AF (2013) Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J Memb Sci 428:309–322.  https://doi.org/10.1016/j.memsci.2012.10.055CrossRefGoogle Scholar
  103. 103.
    Van Blarigan A, Kozarac D, Seiser R, Cattolica R, Chen J-Y, Dibble R (2013) Experimental study of methane fuel oxycombustion in a spark-ignited engine. J Energy Resour Technol 136:012203.  https://doi.org/10.1115/1.4024974CrossRefGoogle Scholar
  104. 104.
    Becher V, Bohn J-P, Dias P, Spliethoff H (2011) Validation of spectral gas radiation models under oxyfuel conditions—Part B: natural gas flame experiments. Int J Greenh Gas Control 5:S66–S75.  https://doi.org/10.1016/j.ijggc.2011.05.006CrossRefGoogle Scholar
  105. 105.
    Blasiak W, Yang WH, Narayanan K, von Schéele J (2007) Flameless oxyfuel combustion for fuel consumption and nitrogen oxides emissions reductions and productivity increase. J Energy Inst 80:3–11.  https://doi.org/10.1179/174602207X174379CrossRefGoogle Scholar
  106. 106.
    Gülder ÖL, Snelling DR, Sawchuk RA (1996) Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames. Symp Combust 26:2351–2358.  https://doi.org/10.1016/S0082-0784(96)80064-6CrossRefGoogle Scholar
  107. 107.
    İlbaş M, Yılmaz İ (2012) Experimental analysis of the effects of hydrogen addition on methane combustion. Int J Energy Res 36:643–647.  https://doi.org/10.1002/er.1822CrossRefGoogle Scholar
  108. 108.
    Hermanns RTE, Konnov AA, Bastiaans RJM, De Goey LPH (n.d.) Laminar burning velocities of diluted hydrogen-oxygen-nitrogen mixtures.  https://doi.org/10.1021/ef060553g
  109. 109.
    Nakahara M, Kido H (2008) Study on the turbulent burning velocity of hydrogen mixtures including hydrocarbons. AIAA J 46.  https://doi.org/10.2514/1.23560
  110. 110.
    Coppens FHV, De Ruyck J, Konnov AA (2007) The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2. Combust Flame 149:409–417.  https://doi.org/10.1016/j.combustflame.2007.02.004CrossRefGoogle Scholar
  111. 111.
    Liu F, Guo H, Smallwood GJ (2003) The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. Combust Flame 133:495–497.  https://doi.org/10.1016/S0010-2180(03)00019-1CrossRefGoogle Scholar
  112. 112.
    Imteyaz B, medhat A Nemitallah, Ahmed A Abdelhafez, Mohamed A Habib (2018) Combustion behavior and stability map of hydrogen-enriched oxy-methane premixed flames in a model gas turbine combustor. Appl Energy 63–74.  https://doi.org/10.1016/j.ijhydene.2018.07.087
  113. 113.
    Abdelwahid S, Nemitallah MA, Imteyaz B, Abdelhafez AA, Habib MAM (2018) On the effects of H2-enrichment and inlet velocity on stability limits and shape of CH4/H2-O2/CO2 flames in a premixed swirl combustor. Energy & Fuels 32:acs.energyfuels.8b01958.  https://doi.org/10.1021/acs.energyfuels.8b01958
  114. 114.
    Park S, Kim T, Sohn J, Lee Y (2011) An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture. Appl Energy 88:1187–1196.  https://doi.org/10.1016/j.apenergy.2010.10.037CrossRefGoogle Scholar
  115. 115.
    Zhang N, Lior N (2008) Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture. Energy 33:340–351.  https://doi.org/10.1016/j.energy.2007.09.006CrossRefGoogle Scholar
  116. 116.
    Simpson AP, Simon AJ (2007) Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation. Energy Convers Manag 48:3034–3045CrossRefGoogle Scholar
  117. 117.
    Kakaras E, Koumanakos A, Doukelis A, Giannakopoulos D, Vorrias I (2007) Oxyfuel boiler design in a lignite-fired power plant. Fuel 86:2144–50.  https://doi.org/10.1016/j.fuel.2007.03.037
  118. 118.
    Hunt A, Dimitrakopoulos G, Ghoniem AF (2015) Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes. J Memb Sci 489:248–257.  https://doi.org/10.1016/j.memsci.2015.03.095CrossRefGoogle Scholar
  119. 119.
    Hunt A, Dimitrakopoulos G, Kirchen P, Ghoniem AF (2014) Measuring the oxygen profile and permeation flux across an ion transport membrane and the development and validation of a multistep surface exchange model. J Memb Sci 468:62–72.  https://doi.org/10.1016/j.memsci.2014.05.043CrossRefGoogle Scholar
  120. 120.
    Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS et al (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci 320:13–41.  https://doi.org/10.1016/j.memsci.2008.03.074CrossRefGoogle Scholar
  121. 121.
    Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion—Part I: intermediate-fidelity modeling. Energy 36:4701–4720.  https://doi.org/10.1016/j.energy.2011.05.023CrossRefGoogle Scholar
  122. 122.
    Kirchen P, Apo DJ, Hunt A, Ghoniem AF (2013) A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc Combust Inst 34:3463–3470.  https://doi.org/10.1016/j.proci.2012.07.076CrossRefGoogle Scholar
  123. 123.
    Xiong J, Zhao H, Zheng C (2011) Exergy analysis of a 600 MW oxy-combustion pulverized-coal- fired power plant. Energy Fuels 25:3854–3864.  https://doi.org/10.1021/ef200702kCrossRefGoogle Scholar
  124. 124.
    Xiong J, Zhao H, Zheng C (2012) Thermoeconomic cost analysis of a 600 MWeoxy-combustion pulverized-coal-fired power plant. Int J Greenh Gas Control 9:469–483.  https://doi.org/10.1016/j.ijggc.2012.05.012CrossRefGoogle Scholar
  125. 125.
    Scaccabarozzi R, Gatti M, Martelli E (2016) Thermodynamic analysis and numerical optimization of the NET power oxy-combustion cycle. Appl Energy 178:505–526.  https://doi.org/10.1016/j.apenergy.2016.06.060CrossRefGoogle Scholar
  126. 126.
    Ziółkowski P, Zakrzewski W, Kaczmarczyk O, Badur J (2013) Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch Thermodyn 34:23–38.  https://doi.org/10.2478/aoter-2013-0008CrossRefGoogle Scholar
  127. 127.
    Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1:495–502.  https://doi.org/10.1016/j.egypro.2009.01.066CrossRefGoogle Scholar
  128. 128.
    Castillo R (2011) Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Appl Energy 88:1480–1493.  https://doi.org/10.1016/j.apenergy.2010.10.044CrossRefGoogle Scholar
  129. 129.
    Skorek-Osikowska A, Bartela Ł, Kotowicz J (2015) A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units. Energy Convers Manag 92:421–430.  https://doi.org/10.1016/j.enconman.2014.12.079CrossRefGoogle Scholar
  130. 130.
    Habib MA, Imteyaz B, Nemitallah MA (2020) Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes. Appl Energy 259:114213CrossRefGoogle Scholar
  131. 131.
    Dillon DJ, Panesar RS, Wall RA, Allam RJ, White V, Gibbins J et al (2005) Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. Greenh. Gas Control Technol 211–20Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Medhat A. Nemitallah
    • 1
    Email author
  • Ahmed A. Abdelhafez
    • 1
  • Mohamed A. Habib
    • 1
  1. 1.TIC in CCS and Mechanical Engineering DepartmentKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations