Rational Thermodynamics

  • Christina Papenfuß


Rational thermodynamics starts out with a few axioms: Constitutive functions fulfill the principle of equipresence, i.e., depend all on the same set of variables, symmetry relations, the requirements of objectivity, and the second law of thermodynamics. The second law of thermodynamics restricts the class of materials. These restrictions are derived by the method of Liu. In the first example, a simple, heat-conducting, viscous fluid, this method leads exactly to the assumptions and predictions of irreversible thermodynamics. In other examples, including material damage and fiber suspensions, the state space includes an internal variable. If the differentiated balance equations are considered as additional constraints, the restrictions on constitutive functions become weaker.


  1. 1.
    I.S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, 131–148 (1972)MathSciNetzbMATHGoogle Scholar
  2. 2.
    C. Papenfuss, Contribution to a Continuum Theory of Two Dimensional Liquid Crystals (Wissenschaft- und Technik Verlag, Berlin, 1995)Google Scholar
  3. 3.
    C. Papenfuss, Liquid crystalline surface tension and radius dependence of the internal pressure in liquid crystalline bubbles and droplets. Mol. Cryst. Liq. Cryst. 367, 2999–3006 (2001)Google Scholar
  4. 4.
    I. Müller, Thermodynamics (Pitman Publ. Co., London, 1985)zbMATHGoogle Scholar
  5. 5.
    G.F. Smith, On isotropic integrity base. Arch. Rat. Mech. Anal. 18, 282 (1965)MathSciNetzbMATHGoogle Scholar
  6. 6.
    G.F. Smith, R.S. Rivlin, The anisotropic tensors. Quart. Appl. Math. 15, 308–314 (1957)MathSciNetzbMATHGoogle Scholar
  7. 7.
    C.C. Wang, A new representation theorem for isotropic functions. Arch. Rat. Mech. Anal. 36, 166 (1970)zbMATHGoogle Scholar
  8. 8.
    W. Muschik, Empirical foundation and axiomatic treatment of non-equilibrium temperature. Arch. Rat. Mech. Anal. 66, 379 (1977)MathSciNetGoogle Scholar
  9. 9.
    W. Muschik, G. Brunk, A concept of non-equilibrium temperature. Int. J. Eng. Sci 15, 377–389 (1977)MathSciNetGoogle Scholar
  10. 10.
    K. Hutter, The foundation of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mechanica 27, 1–54 (1977)Google Scholar
  11. 11.
    Marsden and Hughes, Mathematical Foundations of Elasticity (Practice Hall, Inc., Englewood Cliffs, New Jersey, 1983)zbMATHGoogle Scholar
  12. 12.
    C. Truesdell, W. Noll, Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, vol. III/3, Sect. 98 (Springer, Berlin, etc., 1965)Google Scholar
  13. 13.
    I. Müller, Grundzüge der Thermodynamik (Springer, Berlin, Heidelberg, 1994)Google Scholar
  14. 14.
    W. Muschik, Is the heat flux density really non-objective? a glance back, 40 years later. Continuum Mech. Thermodyn. 24, 333–337 (2012)ADSMathSciNetGoogle Scholar
  15. 15.
    Muschik. Objectivity and frame indifference of acceleration-sensitive materials—50th anniversary of JTAM. J. Theor. Appl. Mech. 50(3), 807–817 (2012)Google Scholar
  16. 16.
    W. Muschik, L. Restuccia, Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech. 78–95, 837 (2008)zbMATHGoogle Scholar
  17. 17.
    A.J.M. Spencer, Theory of invariants, in Continuum Physics, vol. 1, ed. by A.C. Eringen (Academic Press, New York and London, 1971), pp. 239–353Google Scholar
  18. 18.
    W. Muschik, H. Ehrentraut, An amendment to the second law. J. Non-Equilib. Thermodyn. 21, 175 (1996)ADSzbMATHGoogle Scholar
  19. 19.
    W. Muschik, C. Papenfuss, H. Ehrentraut, A sketch of continuum thermodynamics. J. Non-Newtonian Fluid Mech. 96, 255–290 (2001)zbMATHGoogle Scholar
  20. 20.
    W. Muschik, in Proceedings of the International Conference on Nonlinear Mechanics (Science Press, Beijing, Shanghai, 1985)Google Scholar
  21. 21.
    I.S. Liu, I. Müller, Extended thermodynamics of classical and degenerate gases. Arch. Rat. Mech. Anal. 83, 285 (1983)MathSciNetzbMATHGoogle Scholar
  22. 22.
    W. Muschik, Fundamental remarks on evaluating dissipation inequalities, in Lecture Notes in Physics, vol. 199, ed. by J. Casas-Vazquez, D. Jou, G. Lebon (Springer, 1984), pp. 388–397Google Scholar
  23. 23.
    B.D. Colemann, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rat. Mech. Anal. 13, 167–168 (1963)MathSciNetzbMATHGoogle Scholar
  24. 24.
    S. Blenk, H. Ehrentraut, W. Muschik, Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int. J. Eng. Sci. 30(9), 1127–1143 (1992)MathSciNetzbMATHGoogle Scholar
  25. 25.
    B.D. Coleman, On thermodynamics, strain impulses and viscoelasticity. Arch. Rat. Mech. Anal. 17, 230–254 (1964)MathSciNetzbMATHGoogle Scholar
  26. 26.
    B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967)ADSGoogle Scholar
  27. 27.
    B.D. Coleman, D.R. Owen, On the thermodynamics of elastic-plastic materials with temperature-dependent moduli and yield stress. Arch. Rat. Mech. Anal. 70 (1979)Google Scholar
  28. 28.
    W. Muschik, R. Ellinghaus, Zur Auswertung von Dissipationsungleichungen. Z. angew. Math. Mech. (ZAMM) 68, 232–233 (1988)MathSciNetzbMATHGoogle Scholar
  29. 29.
    V. Triani, C. Papenfuss, V.A. Cimmelli, Exploitation of the second law: Coleman-noll and liu procedure in comparison. J. Non-Equilib. Thermodyn. 33(1), 47–60 (2008)ADSzbMATHGoogle Scholar
  30. 30.
    W. Muschik, Recent developments in nonequilibrium thermodynamics, in Lecture Notes in Physics, vol. 199 (Springer, Berlin, 1984)Google Scholar
  31. 31.
    C. Papenfuss, Thermodynamic restrictions on constitutive functions for fiber suspensions. AAPP (Atti della Accademia Peloritana dei Pericolanti) 97(1), A4 (2019)Google Scholar
  32. 32.
    T. Alts, Thermodynamics of thermoelastic bodies with kinematic constraints. Fibre reinforced materials. Arch. Rat. Mech. Anal. 61, 253–289 (1976)Google Scholar
  33. 33.
    R.A. Schapery, A micromechanical model for linear viscoelastic behavior of particle-reinforced rubber with distributed damage. Eng. Fract. Mech. 25, 845–867 (1986)Google Scholar
  34. 34.
    P. Ván, Exploiting the second law in weakly non-local continuum physics. Period. Polytech. Ser. Mech. Eng. 49(1), 79–94 (2005)MathSciNetGoogle Scholar
  35. 35.
    P. Rogolino, V.A. Cimmelli, Differential consequences of balance laws in extended irreversible thermodynamics of rigid heat conductors. Proc. R. Soc. A 475, 20180482, 01 (2019)Google Scholar
  36. 36.
    V.A. Cimmelli, An extension of liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48(113510), 1–13 (2007)MathSciNetzbMATHGoogle Scholar
  37. 37.
    V.A. Cimmelli, A. Sellitto, V. Triani, A generalized coleman-noll procedure for the exploitation of the entropy principle. Proc. R. Soc. A 466, 911–925 (2010)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    P. Van, A. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)ADSzbMATHGoogle Scholar
  39. 39.
    P. Van, A. Berezovski, Microinertia and internal variables. J. Non-Equilib. Thermodyn. 28(4), 1027–1037 (2016)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    A. Berezovski, P. Van, Internal Variables in Thermoelasticity. Solid Mechanics and its Applications, 1st edn. (Springer International Publishing AG, Cham, Switzerland), p. 6 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christina Papenfuß
    • 1
  1. 1.FB 2Hochschule für Technik und WirtschaftBerlinGermany

Personalised recommendations