Pediatric Rehabilitation

  • Christina StarkEmail author
  • Ibrahim Duran
  • Eckhard Schoenau


Children and adolescents with chronic diseases are often restricted in their mobility. Thus, secondary skeletal disorders like contractures, muscle weakness, and muscle atrophy develop additionally to their primary disease. As a result, and compared to healthy peers, the development in all affected areas is restricted and in some aspects even halted, resulting in a lifelong chronic condition. It is known that a more active use of muscle should not only lead to a better mobility in all day living but also to an osteoanabolic effect, a stabilization of the skeletal system, and a reduction of secondary diseases. In comparison to other exercise modalities, whole-body vibration (WBV) can be applied independent of the subjects’ motility, health, and mental status and is therefore appreciated as a feasible exercise modality providing a wide range of dosages tailored to individual requirements for children and adolescents. Therefore, its rehabilitative application has emerged as a valuable add-on in combination with traditional, functional physiotherapeutic programs.


Cerebral palsy Spina bifida Spinal muscular atrophy Osteogenesis imperfecta Depression Down syndrome Scoliosis Cystic fibrosis Obesity 


  1. 1.
    Rosenbaum P, Stewart D. The World Health Organization International Classification of Functioning, Disability, and Health: a model to guide clinical thinking, practice and research in the field of cerebral palsy. Semin Pediatr Neurol. 2004;11(1):5–10.PubMedGoogle Scholar
  2. 2.
    Ryan JM, Cassidy EE, Noorduyn SG, O’Connell NE. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017;6:CD011660.PubMedGoogle Scholar
  3. 3.
    Amatya B, Khan F, La Mantia L, Demetrios M, Wade DT. Non pharmacological interventions for spasticity in multiple sclerosis. Cochrane Database Syst Rev. 2013;2:CD009974.Google Scholar
  4. 4.
    Sitja Rabert M, Rigau Comas D, Fort Vanmeerhaeghe A, Santoyo Medina C, Roque i Figuls M, Romero-Rodriguez D, et al. Whole-body vibration training for patients with neurodegenerative disease. Cochrane Database Syst Rev. 2012;2:CD009097.Google Scholar
  5. 5.
    Matute-Llorente A, Gonzalez-Aguero A, Gomez-Cabello A, Vicente-Rodriguez G, Casajus Mallen JA. Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health. 2014;54(4):385–96.PubMedGoogle Scholar
  6. 6.
    Leite HR, Camargos ACR, Mendonca VA, Lacerda ACR, Soares BA, Oliveira VC. Current evidence does not support whole body vibration in clinical practice in children and adolescents with disabilities: a systematic review of randomized controlled trial. Braz J Phys Ther. 2019;23(3):196–211.PubMedGoogle Scholar
  7. 7.
    Naro A, Leo A, Russo M, Casella C, Buda A, Crespantini A, et al. Breakthroughs in the spasticity management: are non-pharmacological treatments the future? J Clin Neurosci. 2017;39:16–27.PubMedGoogle Scholar
  8. 8.
    Saquetto M, Carvalho V, Silva C, Conceição C, Gomes-Neto M. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015;15(2):137–44.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Sa-Caputo DC, Costa-Cavalcanti R, Carvalho-Lima RP, Arnobio A, Bernardo RM, Ronikeile-Costa P, et al. Systematic review of whole body vibration exercises in the treatment of cerebral palsy: brief report. Dev Neurorehabil. 2016;19(5):327–33.PubMedGoogle Scholar
  10. 10.
    Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr Dis Treat. 2018;14:1607–25.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2000;42(12):816–24.Google Scholar
  12. 12.
    Milner-Brown HS, Penn RD. Pathophysiological mechanisms in cerebral palsy. J Neurol Neurosurg Psychiatry. 1979;42(7):606–18.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Stackhouse SK, Binder-Macleod SA, Lee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31(5):594–601.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Berger W. Cerebral palsy: aspects of pathophysiology and principles of therapy. NeuroRehabilitation. 1998;10(3):257–65.Google Scholar
  15. 15.
    Berger W. Characteristics of locomotor control in children with cerebral palsy. Neurosci Biobehav Rev. 1998;22(4):579–82.PubMedGoogle Scholar
  16. 16.
    Rose J, Wolff DR, Jones VK, Bloch DA, Oehlert JW, Gamble JG. Postural balance in children with cerebral palsy. Dev Med Child Neurol. 2002;44(1):58–63.PubMedGoogle Scholar
  17. 17.
    Elder GC, Kirk J, Stewart G, Cook K, Weir D, Marshall A, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003;45(8):542–50.PubMedGoogle Scholar
  18. 18.
    Krägeloh-Mann I. Zerebralparesen. Update. Monatsschr Kinderheilkd. 2007;155:523–8.Google Scholar
  19. 19.
    Poon DMY, Hui-Chan CWY. Hyperactive stretch reflexes, co-contraction, and muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2009;51(2):128–35.PubMedGoogle Scholar
  20. 20.
    Bar-On L, Molenaers G, Aertbelien E, Van Campenhout A, Feys H, Nuttin B, et al. Spasticity and its contribution to hypertonia in cerebral palsy. Biomed Res Int. 2015;2015:317047.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sheean G, McGuire JR. Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R. 2009;1(9):827–33.PubMedGoogle Scholar
  22. 22.
    Brouwer B, Smits E. Corticospinal input onto motor neurons projecting to ankle muscles in individuals with cerebral palsy. Dev Med Child Neurol. 1996;38(9):787–96.PubMedGoogle Scholar
  23. 23.
    Brouwer B, Ashby P. Altered corticospinal projections to lower limb motoneurons in subjects with cerebral palsy. Brain. 1991;114(Pt 3):1395–407.PubMedGoogle Scholar
  24. 24.
    Leonard CT, Moritani T, Hirschfeld H, Forssberg H. Deficits in reciprocal inhibition of children with cerebral palsy as revealed by H reflex testing. Dev Med Child Neurol. 1990;32(11):974–84.PubMedGoogle Scholar
  25. 25.
    Krägeloh-Mann I, Cans C. Cerebral palsy update. Brain Dev. 2009;31(7):537–44.PubMedGoogle Scholar
  26. 26.
    Rosenbaum PL, Palisano RJ, Bartlett DJ, Galuppi BE, Russell DJ. Development of the gross motor function classification system for cerebral palsy. Dev Med Child Neurol. 2008;50(4):249–53.PubMedGoogle Scholar
  27. 27.
    Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48(6):424–8.PubMedGoogle Scholar
  28. 28.
    Palisano RJ, Hanna SE, Rosenbaum PL, Russell DJ, Walter SD, Wood EP, et al. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther. 2000;80(10):974–85.PubMedGoogle Scholar
  29. 29.
    Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.PubMedGoogle Scholar
  30. 30.
    Duran I, Schutz F, Hamacher S, Semler O, Stark C, Schulze J, et al. The functional muscle-bone unit in children with cerebral palsy. Osteoporos Int. 2017;28(7):2081–93.PubMedGoogle Scholar
  31. 31.
    Barber LA, Read F, Lovatt Stern J, Lichtwark G, Boyd RN. Medial gastrocnemius muscle volume in ambulant children with unilateral and bilateral cerebral palsy aged 2 to 9 years. Dev Med Child Neurol. 2016;58(11):1146–52.PubMedGoogle Scholar
  32. 32.
    Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R. MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain and Development. 2006;28(8):500–6.PubMedGoogle Scholar
  33. 33.
    Ohata K, Tsuboyama T, Haruta T, Ichihashi N, Kato T, Nakamura T. Relation between muscle thickness, spasticity, and activity limitations in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2008;50(2):152–6.PubMedGoogle Scholar
  34. 34.
    Matsunaga N, Ito T, Noritake K, Sugiura H, Kamiya Y, Ito Y, et al. Correlation between the Gait Deviation Index and skeletal muscle mass in children with spastic cerebral palsy. J Phys Ther Sci. 2018;30(9):1176–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sung KH, Chung CY, Lee KM, Cho BC, Moon SJ, Kim J, et al. Differences in body composition according to gross motor function in children with cerebral palsy. Arch Phys Med Rehabil. 2017;98(11):2295–300.PubMedGoogle Scholar
  36. 36.
    Walker JL, Bell KL, Stevenson RD, Weir KA, Boyd RN, Davies PS. Differences in body composition according to functional ability in preschool-aged children with cerebral palsy. Clin Nutr. 2015;34(1):140–5.PubMedGoogle Scholar
  37. 37.
    Schonau E, Werhahn E, Schiedermaier U, Mokow E, Schiessl H, Scheidhauer K, et al. Influence of muscle strength on bone strength during childhood and adolescence. Horm Res. 1996;45(Suppl 1):63–6.PubMedGoogle Scholar
  38. 38.
    Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD. Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr. 2005;146(6):769–75.PubMedGoogle Scholar
  39. 39.
    Henderson RC, Kairalla J, Abbas A, Stevenson RD. Predicting low bone density in children and young adults with quadriplegic cerebral palsy. Dev Med Child Neurol. 2004;46(6):416–9.PubMedGoogle Scholar
  40. 40.
    Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6.PubMedGoogle Scholar
  41. 41.
    Mughal MZ. Fractures in children with cerebral palsy. Curr Osteoporos Rep. 2014;12(3):313–8.PubMedGoogle Scholar
  42. 42.
    Stark C, Hoyer-Kuhn HK, Semler O, Hoebing L, Duran I, Cremer R, et al. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. Childs Nerv Syst. 2015;31(2):301–9.PubMedGoogle Scholar
  43. 43.
    Stark C, Duran I, Cirak S, Hamacher S, Hoyer-Kuhn HK, Semler O, et al. Vibration-assisted home training program for children with spinal muscular atrophy. Child Neurol Open. 2018;5(1–9). Scholar
  44. 44.
    Sa-Caputo DC, Dionello CDF, Frederico EHFF, Paineiras-Domingos LL, Sousa-Goncalves CR, Morel DS, et al. Whole-body vibration exercise improves functional parameters in patients with osteogenesis imperfecta: a systematic review with a suitable approach. Afr J Tradit Complement Altern Med. 2017;14(3):199–208.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wunram HL, Hamacher S, Hellmich M, Volk M, Janicke F, Reinhard F, et al. Whole body vibration added to treatment as usual is effective in adolescents with depression: a partly randomized, three-armed clinical trial in inpatients. Eur Child Adolesc Psychiatry. 2018;27(5):645–62.PubMedGoogle Scholar
  46. 46.
    Saquetto MB, Pereira FF, Queiroz RS, da Silva CM, Conceicao CS, Gomes NM. Effects of whole-body vibration on muscle strength, bone mineral content and density, and balance and body composition of children and adolescents with Down syndrome: a systematic review. Osteoporos Int. 2018;29(3):527–33.PubMedGoogle Scholar
  47. 47.
    Langensiepen S, Stark C, Sobottke R, Semler O, Franklin J, Schraeder M, et al. Home-based vibration assisted exercise as a new treatment option for scoliosis – a randomised controlled trial. J Musculoskelet Neuronal Interact. 2017;17(4):259–67.PubMedPubMedCentralGoogle Scholar
  48. 48.
    O’Keefe K, Orr R, Huang P, Selvadurai H, Cooper P, Munns CF, et al. The effect of whole body vibration exposure on muscle function in children with cystic fibrosis: a pilot efficacy trial. J Clin Med Res. 2013;5(3):205–16.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tubic B, Zeijlon R, Wennergren G, Obermayer-Pietsch B, Marild S, Dahlgren J, et al. Randomised study of children with obesity showed that whole body vibration reduced sclerostin. Acta Paediatr. 2019;108(3):502–13.PubMedGoogle Scholar
  50. 50.
    Erceg DN, Anderson LJ, Nickles CM, Lane CJ, Weigensberg MJ, Schroeder ET. Changes in bone biomarkers, BMC, and insulin resistance following a 10-week whole body vibration exercise program in overweight Latino boys. Int J Med Sci. 2015;12(6):494–501.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Krause A, Schonau E, Gollhofer A, Duran I, Ferrari-Malik A, Freyler K, et al. Alleviation of motor impairments in patients with cerebral palsy: acute effects of whole-body vibration on stretch reflex response, voluntary muscle activation and mobility. Front Neurol. 2017;8:416.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Eklund G, Steen M. Muscle vibration therapy in children with cerebral palsy. Scand J Rehabil Med. 1969;1(1):35–7.PubMedGoogle Scholar
  53. 53.
    Park C, Park ES, Choi JY, Cho Y, Rha DW. Correction: immediate effect of a single session of whole body vibration on spasticity in children with cerebral palsy. Ann Rehabil Med. 2017;41(4):722–3.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tupimai T, Peungsuwan P, Prasertnoo J, Yamauchi J. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy. J Phys Ther Sci. 2016;28(1):7–13.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Cheng HY, Ju YY, Chen CL, Chuang LL, Cheng CH. Effects of whole body vibration on spasticity and lower extremity function in children with cerebral palsy. Hum Mov Sci. 2015;39:65–72.PubMedGoogle Scholar
  56. 56.
    Cannon SE, Rues JP, Melnick ME, Guess D. Head-erect behavior among three preschool-aged children with cerebral palsy. Phys Ther. 1987;67(8):1198–204.PubMedGoogle Scholar
  57. 57.
    Tardieu G, Tardieu C, Lespargot A, Roby A, Bret MD. Can vibration-induced illusions be used as a muscle perception test for normal and cerebral-palsied children? Dev Med Child Neurol. 1984;26(4):449–56.PubMedGoogle Scholar
  58. 58.
    Dickin DC, Faust KA, Wang H, Frame J. The acute effects of whole-body vibration on gait parameters in adults with cerebral palsy. J Musculoskelet Neuronal Interact. 2013;13(1):19–26.PubMedGoogle Scholar
  59. 59.
    Semler O, Fricke O, Vezyroglou K, Stark C, Schoenau E. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J Musculoskelet Neuronal Interact. 2007;7(1):77–81.PubMedGoogle Scholar
  60. 60.
    Ahlborg L, Andersson C, Julin P. Whole-body vibration training compared with resistance training: effect on spasticity, muscle strength and motor performance in adults with cerebral palsy. J Rehabil Med. 2006;38(5):302–8.PubMedGoogle Scholar
  61. 61.
    Stark C, Nikopoulou-Smyrni P, Stabrey A, Semler O, Schoenau E. Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy. J Musculoskeletal Neuronal Interact. 2010;10(2):151–8.Google Scholar
  62. 62.
    Stark C, Semler O, Duran I, Stabrey A, Kaul I, Herkenrath P, et al. Intervallrehabilitation mit häuslichem Training bei Kindern mit Zerebralparese. Monatsschr Kinderheilkd. 2013;161:625–32.Google Scholar
  63. 63.
    Ibrahim MM, Eid MA, Moawd SA. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children. Egypt J Med Hum Genet. 2014;15(2):173–9.Google Scholar
  64. 64.
    Yabumoto T, Shin S, Watanabe T, Watanabe Y, Naka T, Oguri K, et al. Whole-body vibration training improves the walking ability of a moderately impaired child with cerebral palsy: a case study. J Phys Ther Sci. 2015;27(9):3023–5.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, et al. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Orthop. 2010;30(7):732–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Unger M, Jelsma J, Stark C. Effect of a trunk-targeted intervention using vibration on posture and gait in children with spastic type cerebral palsy: a randomized control trial. Dev Neurorehabil. 2013;16(2):79–88.PubMedGoogle Scholar
  67. 67.
    El-Shamy SM. Effect of whole-body vibration on muscle strength and balance in diplegic cerebral palsy: a randomized controlled trial. Am J Phys Med Rehabil. 2014;93(2):114–21.PubMedGoogle Scholar
  68. 68.
    Ko MS, Sim YJ, Kim DH, Jeon HS. Effects of three weeks of whole-body vibration training on joint-position sense, balance, and gait in children with cerebral palsy: a randomized controlled study. Physiother Can. 2016;68(2):99–105.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ruck J, Chabot G, Rauch F. Vibration treatment in cerebral palsy: a randomized controlled pilot study. J Musculoskeletal Neuronal Interact. 2010;10(1):77–83.Google Scholar
  70. 70.
    Gusso S, Munns CF, Colle P, Derraik JG, Biggs JB, Cutfield WS, et al. Effects of whole-body vibration training on physical function, bone and muscle mass in adolescents and young adults with cerebral palsy. Sci Rep. 2016;6:22518.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee BK, Chon SC. Effect of whole body vibration training on mobility in children with cerebral palsy: a randomized controlled experimenter-blinded study. Clin Rehabil. 2013;27(7):599–607.PubMedGoogle Scholar
  72. 72.
    Camerota F, Galli M, Celletti C, Vimercati S, Cimolin V, Tenore N, et al. Quantitative effects of repeated muscle vibrations on gait pattern in a 5-year-old child with cerebral palsy. Case Rep Med. 2011;2011:359126.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Reyes ML, Hernandez M, Holmgren LJ, Sanhueza E, Escobar RG. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children. J Bone Miner Res. 2011;26(8):1759–66.PubMedGoogle Scholar
  74. 74.
    Hogler W, Scott J, Bishop N, Arundel P, Nightingale P, Mughal MZ, et al. The effect of whole body vibration training on bone and muscle function in children with osteogenesis imperfecta. J Clin Endocrinol Metab. 2017;102(8):2734–43.PubMedGoogle Scholar
  75. 75.
    Semler O, Fricke O, Vezyroglou K, Stark C, Stabrey A, Schoenau E. Results of a prospective pilot trial on mobility after whole body vibration in children and adolescents with osteogenesis imperfecta. Clin Rehabil. 2008;22(5):387–94.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Hoyer-Kuhn H, Semler O, Stark C, Struebing N, Goebel O, Schoenau E. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445–53.PubMedGoogle Scholar
  77. 77.
    Eid MA. Effect of whole-body vibration training on standing balance and muscle strength in children with Down syndrome. Am J Phys Med Rehabil. 2015;94(8):633–43.PubMedGoogle Scholar
  78. 78.
    Emara HA. Effects of whole body vibration on body composition and muscle strength of children with Down syndrome. Intern J Ther Rehabil Res. 2016;5(4):1–8.Google Scholar
  79. 79.
    Matute-Llorente A, Gonzalez-Aguero A, Gomez-Cabello A, Olmedillas H, Vicente-Rodriguez G, Casajus JA. Effect of whole body vibration training on bone mineral density and bone quality in adolescents with Down syndrome: a randomized controlled trial. Osteoporos Int. 2015;26(10):2449–59.PubMedGoogle Scholar
  80. 80.
    Lam TP, Ng BK, Cheung LW, Lee KM, Qin L, Cheng JC. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporos Int. 2013;24(5):1623–36.PubMedGoogle Scholar
  81. 81.
    El-Shamy SM, Mohamed MSE. Effect of whole body vibration training on bone mineral density in cerebral palsy children. Ind J Physiother Occup Ther. 2012;6:139–41.Google Scholar
  82. 82.
    Duran I, Stark C, Martakis K, Hamacher S, Semler O, Schoenau E. Reference centiles for the gross motor function measure and identification of therapeutic effects in children with cerebral palsy. J Eval Clin Pract. 2019;5(1):78–87.PubMedGoogle Scholar
  83. 83.
    Stark C, Herkenrath P, Hollmann H, Waltz S, Becker I, Hoebing L, et al. Early vibration assisted physiotherapy in toddlers with cerebral palsy – a randomized controlled pilot trial. J Musculoskelet Neuronal Interact. 2016;16(3):183–92.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Spittle A, Orton J, Anderson PJ, Boyd R, Doyle LW. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev. 2015;(11):CD005495.Google Scholar
  85. 85.
    Ryznychuk MO, Kryvchanska MI, Lastivka IV, Bulyk RY. Incidence and risk factors of spina bifida in children. Wiad Lek. 2018;71(2 pt 2):339–44.PubMedGoogle Scholar
  86. 86.
    van Schie PE, Schothorst M, Dallmeijer AJ, Vermeulen RJ, van Ouwerkerk WJ, Strijers RL, et al. Short- and long-term effects of selective dorsal rhizotomy on gross motor function in ambulatory children with spastic diplegia. J Neurosurg Pediatr. 2011;7(5):557–62.PubMedGoogle Scholar
  87. 87.
    Short KR, Frimberger D. A review of the potential for cardiometabolic dysfunction in youth with spina bifida and the role for physical activity and structured exercise. Int J Pediatr. 2012;2012:541363.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Pauly M, Cremer R. Levels of mobility in children and adolescents with spina bifida-clinical parameters predicting mobility and maintenance of these skills. Eur J Pediatr Surg. 2013;23(2):110–4.PubMedGoogle Scholar
  89. 89.
    Hoffer MM, Feiwell E, Perry R, Perry J, Bonnett C. Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am. 1973;55(1):137–48.PubMedGoogle Scholar
  90. 90.
    Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol. 2001;43(4):253–60.PubMedGoogle Scholar
  91. 91.
    Norrlin S, Strinnholm M, Carlsson M, Dahl M. Factors of significance for mobility in children with myelomeningocele. Acta Paediatr. 2003;92(2):204–10.PubMedGoogle Scholar
  92. 92.
    Marreiros H, Loff C, Calado E. Osteoporosis in paediatric patients with spina bifida. J Spinal Cord Med. 2012;35(1):9–21.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Szalay EA, Cheema A. Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res. 2011;469(5):1253–7.PubMedGoogle Scholar
  94. 94.
    Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS. Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med. 2007;30(Suppl 1):S5–9.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Schoenau E. From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact. 2005;5(3):232–8.PubMedGoogle Scholar
  96. 96.
    Wirth F, Schempf G, Stein G, Wellmann K, Manthou M, Scholl C, et al. Whole-body vibration improves functional recovery in spinal cord-injured rats. J Neurotrauma. 2013;30(6):453–68.PubMedGoogle Scholar
  97. 97.
    Hubli M, Bolliger M, Dietz V. Neuronal dysfunction in chronic spinal cord injury. Spinal Cord. 2011;49(5):582–7.PubMedGoogle Scholar
  98. 98.
    Pittman R, Oppenheim RW. Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J Comp Neurol. 1979;187(2):425–46.PubMedGoogle Scholar
  99. 99.
    Herrero AJ, Menendez H, Gil L, Martin J, Martin T, Garcia-Lopez D, et al. Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord. 2011;49(4):554–9.Google Scholar
  100. 100.
    Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet. 1978;15(6):409–13.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Czeizel A, Hamula J. A hungarian study on Werdnig-Hoffmann disease. J Med Genet. 1989;26(12):761–3.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Wirth B, Brichta L, Hahnen E. Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol. 2006;13(2):121–31.PubMedGoogle Scholar
  103. 103.
    Henderson CE, Fardeau M. Nerve growth factors: a hypothesis on their role in the pathogenesis of infantile spinal amyotrophies. Rev Neurol (Paris). 1988;144(11):730–6.Google Scholar
  104. 104.
    Sarnat HB, Jacob P, Jimenez C. Spinal muscular atrophy: disappearance of RNA fluorescence of degenerating motor neurons. An acridine orange study. Rev Neurol (Paris). 1989;145(4):305–11.Google Scholar
  105. 105.
    Wessel HB. Spinal muscular atrophy. Pediatr Ann. 1989;18(7):421–7.PubMedGoogle Scholar
  106. 106.
    Russman BS, Iannacone ST, Buncher CR, Samaha FJ, White M, Perkins B, et al. Spinal muscular atrophy: new thoughts on the pathogenesis and classification schema. J Child Neurol. 1992;7(4):347–53.PubMedGoogle Scholar
  107. 107.
    Vry J, Schubert IJ, Semler O, Haug V, Schonau E, Kirschner J. Whole-body vibration training in children with Duchenne muscular dystrophy and spinal muscular atrophy. Eur J Paediatr Neurol. 2014;18(2):140–9.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Lewelt A, Krosschell KJ, Stoddard GJ, Weng C, Xue M, Marcus RL, et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve. 2015;52(4):559–67.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Grondard C, Biondi O, Armand AS, Lecolle S, Della Gaspera B, Pariset C, et al. Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse. J Neurosci. 2005;25(33):7615–22.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Charbonnier F. Exercise-induced neuroprotection in SMA model mice: a means for determining new therapeutic strategies. Mol Neurobiol. 2007;35(3):217–23.PubMedGoogle Scholar
  111. 111.
    Chali F, Desseille C, Houdebine L, Benoit E, Rouquet T, Bariohay B, et al. Long-term exercise-specific neuroprotection in spinal muscular atrophy-like mice. J Physiol. 2016;594(7):1931–52.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Biondi O, Grondard C, Lecolle S, Deforges S, Pariset C, Lopes P, et al. Exercise-induced activation of NMDA receptor promotes motor unit development and survival in a type 2 spinal muscular atrophy model mouse. J Neurosci. 2008;28(4):953–62.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Fletcher EV, Simon CM, Pagiazitis JG, Chalif JI, Vukojicic A, Drobac E, et al. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat Neurosci. 2017;20(7):905–16.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003;31(1):3–7.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W. EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol. 2010;110(1):143–51.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Ritzmann R, Kramer A, Gollhofer A, Taube W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. 2013;23(3):331–9.Google Scholar
  117. 117.
    Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17(6):1095–101.PubMedGoogle Scholar
  118. 118.
    Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13(6):571–90.PubMedGoogle Scholar
  119. 119.
    Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470–81.PubMedGoogle Scholar
  120. 120.
    Engelbert RH, Uiterwaal CS, Gulmans VA, Pruijs H, Helders PJ. Osteogenesis imperfecta in childhood: prognosis for walking. J Pediatr. 2000;137(3):397–402.PubMedGoogle Scholar
  121. 121.
    Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res. 2001;16(4):597–604.PubMedGoogle Scholar
  122. 122.
    Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tato L, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20(5):758–63.PubMedGoogle Scholar
  123. 123.
    Ruck J, Dahan-Oliel N, Montpetit K, Rauch F, Fassier F. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5(3):217–24.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Mueller B, Engelbert R, Baratta-Ziska F, Bartels B, Blanc N, Brizola E, et al. Consensus statement on physical rehabilitation in children and adolescents with osteogenesis imperfecta. Orphanet J Rare Dis. 2018;13(1):158.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Hoyer-Kuhn H, Schoenau E, Semler O. Letter to the editor: “The effect of whole body vibration training on bone and muscle function in children with osteogenesis imperfecta”. J Clin Endocrinol Metab. 2017;102(11):4260–1.PubMedGoogle Scholar
  126. 126.
    Hogler W, Bishop N, Nightingale P, Shaw N, Padidela R, Crabtree N. Response to letter to the editor: “The effect of whole body vibration training on bone and muscle function in children with osteogenesis imperfecta”. J Clin Endocrinol Metab. 2017;102(11):4262–3.PubMedGoogle Scholar
  127. 127.
    Schoenau E. The “functional muscle-bone unit”: a two-step diagnostic algorithm in pediatric bone disease. Pediatr Nephrol. 2005;20(3):356–9.PubMedGoogle Scholar
  128. 128.
    Hobson-Rohrer WL, Samson-Fang L. Down syndrome. Pediatr Rev. 2013;34(12):573–4; discussion 574.PubMedGoogle Scholar
  129. 129.
    Wang HY, Long IM, Liu MF. Relationships between task-oriented postural control and motor ability in children and adolescents with Down syndrome. Res Dev Disabil. 2012;33(6):1792–8.PubMedGoogle Scholar
  130. 130.
    Pachajoa H, Riascos AJ, Castro D, Isaza C, Quintero JC. Down syndrome passed from mother to child. Biomedica. 2014;34(3):326–9.PubMedGoogle Scholar
  131. 131.
    Ulrich DA, Lloyd MC, Tiernan CW, Looper JE, Angulo-Barroso RM. Effects of intensity of treadmill training on developmental outcomes and stepping in infants with Down syndrome: a randomized trial. Phys Ther. 2008;88(1):114–22.PubMedGoogle Scholar
  132. 132.
    Gonzalez-Aguero A, Matute-Llorente A, Gomez-Cabello A, Casajus JA, Vicente-Rodriguez G. Effects of whole body vibration training on body composition in adolescents with Down syndrome. Res Dev Disabil. 2013;34(5):1426–33.PubMedGoogle Scholar
  133. 133.
    Villarroya MA, Gonzalez-Aguero A, Moros T, Gomez-Trullen E, Casajus JA. Effects of whole body vibration training on balance in adolescents with and without Down syndrome. Res Dev Disabil. 2013;34(10):3057–65.PubMedGoogle Scholar
  134. 134.
    Bettge S, Wille N, Barkmann C, Schulte-Markwort M, Ravens-Sieberer U, BELLA Study Group. Depressive symptoms of children and adolescents in a German representative sample: results of the BELLA study. Eur Child Adolesc Psychiatry. 2008;17(Suppl 1):71–81.PubMedGoogle Scholar
  135. 135.
    Carli V, Hoven CW, Wasserman C, Chiesa F, Guffanti G, Sarchiapone M, et al. A newly identified group of adolescents at “invisible” risk for psychopathology and suicidal behavior: findings from the SEYLE study. World Psychiatry. 2014;13(1):78–86.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Dolle K, Schulte-Korne G. The treatment of depressive disorders in children and adolescents. Dtsch Arztebl Int. 2013;110(50):854–60.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Herpertz-Dahlmann B, Buhren K, Remschmidt H. Growing up is hard: mental disorders in adolescence. Dtsch Arztebl Int. 2013;110(25):432–9; quiz 440.Google Scholar
  138. 138.
    March J, Silva S, Vitiello B, TADS Team. The Treatment for Adolescents with Depression Study (TADS): methods and message at 12 weeks. J Am Acad Child Adolesc Psychiatry. 2006;45(12):1393–403.PubMedGoogle Scholar
  139. 139.
    Hammad TA, Laughren T, Racoosin J. Suicidality in pediatric patients treated with antidepressant drugs. Arch Gen Psychiatry. 2006;63(3):332–9.PubMedGoogle Scholar
  140. 140.
    Libby AM, Brent DA, Morrato EH, Orton HD, Allen R, Valuck RJ. Decline in treatment of pediatric depression after FDA advisory on risk of suicidality with SSRIs. Am J Psychiatry. 2007;164(6):884–91.PubMedGoogle Scholar
  141. 141.
    Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, et al. Exercise for depression. Cochrane Database Syst Rev. 2013;12(9):CD004366.Google Scholar
  142. 142.
    Petty KH, Davis CL, Tkacz J, Young-Hyman D, Waller JL. Exercise effects on depressive symptoms and self-worth in overweight children: a randomized controlled trial. J Pediatr Psychol. 2009;34(9):929–39.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Carter T, Morres I, Repper J, Callaghan P. Exercise for adolescents with depression: valued aspects and perceived change. J Psychiatr Ment Health Nurs. 2016;23(1):37–44.PubMedGoogle Scholar
  144. 144.
    Hughes CW, Barnes S, Barnes C, Defina LF, Nakonezny P, Emslie GJ. Depressed Adolescents Treated with Exercise (DATE): a pilot randomized controlled trial to test feasibility and establish preliminary effect sizes. Ment Health Phys Act. 2013;6(2). Scholar
  145. 145.
    Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9.PubMedGoogle Scholar
  146. 146.
    Negrini S, Aulisa AG, Aulisa L, Circo AB, de Mauroy JC, Durmala J, et al. 2011 SOSORT guidelines: orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2012;7(1):3.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Romano M, Minozzi S, Zaina F, Saltikov JB, Chockalingam N, Kotwicki T, et al. Exercises for adolescent idiopathic scoliosis: a Cochrane systematic review. Spine (Phila Pa 1976). 2013;38(14):E883–93.Google Scholar
  148. 148.
    Lehnert-Schroth C. Dreidimensionale Skoliosebehandlung: Atmungs-Orthopädie System Schroth. Germany: Urban & Fischer; 1999.Google Scholar
  149. 149.
    Orenstein DM, Hovell MF, Mulvihill M, Keating KK, Hofstetter CR, Kelsey S, et al. Strength vs aerobic training in children with cystic fibrosis: a randomized controlled trial. Chest. 2004;126(4):1204–14.PubMedGoogle Scholar
  150. 150.
    Buntain HM, Greer RM, Schluter PJ, Wong JC, Batch JA, Potter JM, et al. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: a controlled cross sectional study. Thorax. 2004;59(2):149–55.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Selvadurai HC, Blimkie CJ, Cooper PJ, Mellis CM, Van Asperen PP. Gender differences in habitual activity in children with cystic fibrosis. Arch Dis Child. 2004;89(10):928–33.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Orenstein DM, Higgins LW. Update on the role of exercise in cystic fibrosis. Curr Opin Pulm Med. 2005;11(6):519–23.PubMedGoogle Scholar
  153. 153.
    Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992;327(25):1785–8.PubMedGoogle Scholar
  154. 154.
    Orenstein DM, Franklin BA, Doershuk CF, Hellerstein HK, Germann KJ, Horowitz JG, et al. Exercise conditioning and cardiopulmonary fitness in cystic fibrosis. The effects of a three-month supervised running program. Chest. 1981;80(4):392–8.PubMedGoogle Scholar
  155. 155.
    Gulmans VA, de Meer K, Brackel HJ, Faber JA, Berger R, Helders PJ. Outpatient exercise training in children with cystic fibrosis: physiological effects, perceived competence, and acceptability. Pediatr Pulmonol. 1999;28(1):39–46.PubMedGoogle Scholar
  156. 156.
    Selvadurai HC, Blimkie CJ, Meyers N, Mellis CM, Cooper PJ, Van Asperen PP. Randomized controlled study of in-hospital exercise training programs in children with cystic fibrosis. Pediatr Pulmonol. 2002;33(3):194–200.PubMedGoogle Scholar
  157. 157.
    Klijn PH, Terheggen-Lagro SW, Van Der Ent CK, Van Der Net J, Kimpen JL, Helders PJ. Anaerobic exercise in pediatric cystic fibrosis. Pediatr Pulmonol. 2003;36(3):223–9.PubMedGoogle Scholar
  158. 158.
    Zach M, Oberwaldner B, Hausler F. Cystic fibrosis: physical exercise versus chest physiotherapy. Arch Dis Child. 1982;57(8):587–9.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Strauss GD, Osher A, Wang CI, Goodrich E, Gold F, Colman W, et al. Variable weight training in cystic fibrosis. Chest. 1987;92(2):273–6.PubMedGoogle Scholar
  160. 160.
    Quittner AL. Measurement of quality of life in cystic fibrosis. Curr Opin Pulm Med. 1998;4(6):326–31.PubMedGoogle Scholar
  161. 161.
    Hussey J, Gormley J, Leen G, Greally P. Peripheral muscle strength in young males with cystic fibrosis. J Cyst Fibros. 2002;1(3):116–21.PubMedGoogle Scholar
  162. 162.
    Pinet C, Cassart M, Scillia P, Lamotte M, Knoop C, Casimir G, et al. Function and bulk of respiratory and limb muscles in patients with cystic fibrosis. Am J Respir Crit Care Med. 2003;168(8):989–94.PubMedGoogle Scholar
  163. 163.
    Barry SC, Gallagher CG. Corticosteroids and skeletal muscle function in cystic fibrosis. J Appl Physiol (1985). 2003;95(4):1379–84.Google Scholar
  164. 164.
    de Meer K, Jeneson JA, Gulmans VA, van der Laag J, Berger R. Efficiency of oxidative work performance of skeletal muscle in patients with cystic fibrosis. Thorax. 1995;50(9):980–3.PubMedPubMedCentralGoogle Scholar
  165. 165.
    de Meer K, Gulmans VA, van Der Laag J. Peripheral muscle weakness and exercise capacity in children with cystic fibrosis. Am J Respir Crit Care Med. 1999;159(3):748–54.PubMedGoogle Scholar
  166. 166.
    Moser C, Tirakitsoontorn P, Nussbaum E, Newcomb R, Cooper DM. Muscle size and cardiorespiratory response to exercise in cystic fibrosis. Am J Respir Crit Care Med. 2000;162(5):1823–7.PubMedGoogle Scholar
  167. 167.
    Elkin SL, Williams L, Moore M, Hodson ME, Rutherford OM. Relationship of skeletal muscle mass, muscle strength and bone mineral density in adults with cystic fibrosis. Clin Sci (Lond). 2000;99(4):309–14.Google Scholar
  168. 168.
    Enright S, Chatham K, Ionescu AA, Unnithan VB, Shale DJ. The influence of body composition on respiratory muscle, lung function and diaphragm thickness in adults with cystic fibrosis. J Cyst Fibros. 2007;6(6):384–90.PubMedGoogle Scholar
  169. 169.
    Lands LC, Heigenhauser GJ, Jones NL. Respiratory and peripheral muscle function in cystic fibrosis. Am Rev Respir Dis. 1993;147(4):865–9.PubMedGoogle Scholar
  170. 170.
    Ionescu AA, Evans WD, Pettit RJ, Nixon LS, Stone MD, Shale DJ. Hidden depletion of fat-free mass and bone mineral density in adults with cystic fibrosis. Chest. 2003;124(6):2220–8.PubMedGoogle Scholar
  171. 171.
    Moorcroft AJ, Dodd ME, Webb AK. Long-term change in exercise capacity, body mass, and pulmonary function in adults with cystic fibrosis. Chest. 1997;111(2):338–43.PubMedGoogle Scholar
  172. 172.
    Boucher GP, Lands LC, Hay JA, Hornby L. Activity levels and the relationship to lung function and nutritional status in children with cystic fibrosis. Am J Phys Med Rehabil. 1997;76(4):311–5.PubMedGoogle Scholar
  173. 173.
    Pinet C, Scillia P, Cassart M, Lamotte M, Knoop C, Melot C, et al. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis. Thorax. 2004;59(9):783–9.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Botton E, Saraux A, Laselve H, Jousse S, Le Goff P. Musculoskeletal manifestations in cystic fibrosis. Joint Bone Spine. 2003;70(5):327–35.PubMedGoogle Scholar
  175. 175.
    Costa M, Potvin S, Hammana I, Malet A, Berthiaume Y, Jeanneret A, et al. Increased glucose excursion in cystic fibrosis and its association with a worse clinical status. J Cyst Fibros. 2007;6(6):376–83.PubMedGoogle Scholar
  176. 176.
    Bell SC, Saunders MJ, Elborn JS, Shale DJ. Resting energy expenditure and oxygen cost of breathing in patients with cystic fibrosis. Thorax. 1996;51(2):126–31.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Selvadurai HC, Allen J, Sachinwalla T, Macauley J, Blimkie CJ, Van Asperen PP. Muscle function and resting energy expenditure in female athletes with cystic fibrosis. Am J Respir Crit Care Med. 2003;168(12):1476–80.PubMedGoogle Scholar
  178. 178.
    Ionescu AA, Mickleborough TD, Bolton CE, Lindley MR, Nixon LS, Dunseath G, et al. The systemic inflammatory response to exercise in adults with cystic fibrosis. J Cyst Fibros. 2006;5(2):105–12.PubMedGoogle Scholar
  179. 179.
    Davis PB. Therapy for cystic fibrosis – the end of the beginning? N Engl J Med. 2011;365(18):1734–5.PubMedGoogle Scholar
  180. 180.
    Rietschel E, van Koningsbruggen S, Fricke O, Semler O, Schoenau E. Whole body vibration: a new therapeutic approach to improve muscle function in cystic fibrosis? Int J Rehabil Res. 2008;31(3):253–6.PubMedGoogle Scholar
  181. 181.
    Roth J, Wust M, Rawer R, Schnabel D, Armbrecht G, Beller G, et al. Whole body vibration in cystic fibrosis – a pilot study. J Musculoskelet Neuronal Interact. 2008;8(2):179–87.PubMedGoogle Scholar
  182. 182.
    Delecluse C, Roelants M, Verschueren S. Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc. 2003;35(6):1033–41.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Torvinen S, Kannus P, Sievanen H, Jarvinen TA, Pasanen M, Kontulainen S, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res. 2003;18(5):876–84.PubMedGoogle Scholar
  184. 184.
    Rehn B, Lidstrom J, Skoglund J, Lindstrom B. Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scand J Med Sci Sports. 2007;17(1):2–11.PubMedGoogle Scholar
  185. 185.
    Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016. NCHS Data Brief. 2017;(288):1–8.Google Scholar
  186. 186.
    Rustler V, Daggelmann J, Streckmann F, Bloch W, Baumann FT. Whole-body vibration in children with disabilities demonstrates therapeutic potentials for pediatric cancer populations: a systematic review. Support Care Cancer. 2019;27(2):395–406.PubMedGoogle Scholar
  187. 187.
    Rustler V, Prokop A, Baumann FT, Streckmann F, Bloch W, Daeggelmann J. Whole-body vibration training designed to improve functional impairments after pediatric inpatient anticancer therapy: a pilot study. Pediatr Phys Ther. 2018;30(4):341–9.PubMedGoogle Scholar
  188. 188.
    Eid MA, Aly SM. Effect of whole body vibration training on bone mineral density and functional capacity in children with thalassemia. Physiother Theory Pract. 2019;10:1–8.Google Scholar
  189. 189.
    Fung EB, Gariepy CA, Sawyer AJ, Higa A, Vichinsky EP. The effect of whole body vibration therapy on bone density in patients with thalassemia: a pilot study. Am J Hematol. 2012;87(10):E76–9.PubMedGoogle Scholar
  190. 190.
    El-Shamy S. Effect of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia: a randomized clinical trial. J Musculoskelet Neuronal Interact. 2017;17(2):19–26.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Williams CM, Michalitsis J, Murphy AT, Rawicki B, Haines TP. Whole-body vibration results in short-term improvement in the gait of children with idiopathic toe walking. J Child Neurol. 2016;31(9):1143–9.PubMedGoogle Scholar
  192. 192.
    Edionwe J, Hess C, Fernandez-Rio J, Herndon DN, Andersen CR, Klein GL, et al. Effects of whole-body vibration exercise on bone mineral content and density in thermally injured children. Burns. 2016;42(3):605–13.PubMedPubMedCentralGoogle Scholar
  193. 193.
    den Heijer AE, Groen Y, Fuermaier AB, van Heuvelen MJ, van der Zee EA, Tucha L, et al. Acute effects of whole body vibration on inhibition in healthy children. PLoS One. 2015;10(11):e0140665.Google Scholar
  194. 194.
    Verschuren O, Ketelaar M, Takken T, Helders PJ, Gorter JW. Exercise programs for children with cerebral palsy: a systematic review of the literature. Am J Phys Med Rehabil. 2008;87(5):404–17.PubMedGoogle Scholar
  195. 195.
    Kita M, Goodkin DE. Drugs used to treat spasticity. Drugs. 2000;59(3):487–95.PubMedGoogle Scholar
  196. 196.
    Graham HK, Aoki KR, Autti-Ramo I, Boyd RN, Delgado MR, Gaebler-Spira DJ, et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11(1):67–79.PubMedGoogle Scholar
  197. 197.
    Abel MF, Damiano DL, Pannunzio M, Bush J. Muscle-tendon surgery in diplegic cerebral palsy: functional and mechanical changes. J Pediatr Orthop. 1999;19(3):366–75.PubMedGoogle Scholar
  198. 198.
    Fasano VA, Broggi G, Barolat-Romana G, Sguazzi A. Surgical treatment of spasticity in cerebral palsy. Childs Brain. 1978;4(5):289–305.PubMedGoogle Scholar
  199. 199.
    Ritzmann R, Gollhofer A, Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol. 2013;113(1):1–11.Google Scholar
  200. 200.
    Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39(9):1642–50.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christina Stark
    • 1
    • 2
    Email author
  • Ibrahim Duran
    • 3
  • Eckhard Schoenau
    • 1
    • 2
  1. 1.Department of Pediatrics, Medical Faculty and University HospitalUniversity of CologneCologneGermany
  2. 2.Center of Prevention and Rehabilitation, Medical Faculty and University HospitalUniversity of CologneCologneGermany
  3. 3.Center of Prevention and Rehabilitation, Medical Faculty and University HospitalUniversity of CologneCologneGermany

Personalised recommendations