Advertisement

Circulation Effects

  • Darryl CochraneEmail author
  • Jörn Rittweger
Chapter
  • 31 Downloads

Abstract

Exercise is normally associated with an increased demand for transport of oxygen, carbon dioxide and substrate, thus requiring increases in cardiac output and heart rate. Equally important as the central cardiovascular response is the direction of blood flow towards the working musculature, and the microcirculation herein.

Ample evidence indicates that the central cardiovascular demands by whole-body vibration exercise are very moderate, although cardiac output has not yet been measured during whole-body vibration (WBV). This implies that WBV is unlikely to improve aerobic fitness, but that aerobically unfit patients are likely able to perform WBV.

With regard to local blood supply and microcirculation in the working musculature, vibration exercise seems to increase blood flow in a dose-specific manner, and it may also induce a short-lasting improvement of tissue oxygenation. However, that effect persists for only approximately 1 minute. Possibly, this effect is of direct mechanical nature. The present knowledge therefore suggests that vibration exercise could have specific merit in patients with disrupted microcirculation, e.g., in diabetic patients, in particular when they have low aerobic fitness.

Keywords

Cardiovascular Microcirculation Cardiac output Heart rate 

References

  1. 1.
    Capek JM, Roy RJ. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35(9):653–61.CrossRefGoogle Scholar
  2. 2.
    Boushel R, Piantadosi CA. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand. 2000;168(4):615–22.CrossRefGoogle Scholar
  3. 3.
    Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60(2):534–41.CrossRefGoogle Scholar
  4. 4.
    Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, et al. Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol. 2001;21(3):377–82.CrossRefGoogle Scholar
  5. 5.
    Lythgo N, Eser P, de Groot P, Galea M. Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging. 2009;29(1):53–9.CrossRefGoogle Scholar
  6. 6.
    Games KE, Sefton JM, Wilson AE. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis. J Athl Train. 2015;50(5):542–9.CrossRefGoogle Scholar
  7. 7.
    Herrero AJ, Menendez H, Gil L, Martin J, Martin T, Garcia-Lopez D, et al. Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord. 2011;49(4):554–9.CrossRefGoogle Scholar
  8. 8.
    Yarar-Fisher C, Pascoe DD, Gladden LB, Quindry JC, Hudson J, Sefton J. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury. Disabil Rehabil. 2014;36(2):136–45.CrossRefGoogle Scholar
  9. 9.
    Sanudo B, Cesar-Castillo M, Tejero S, Cordero-Arriaza FJ, Oliva-Pascual-Vaca A, Figueroa A. Effects of vibration on leg blood flow after intense exercise and its influence on subsequent exercise performance. J Strength Cond Res. 2016;30(4):1111–7.CrossRefGoogle Scholar
  10. 10.
    Zange JC, Molitor S, Illbruck A, Muller K, Schonau E, Kohl-Bareis M, et al. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation. Eur J Appl Physiol. 2014;114(5):1005–12.CrossRefGoogle Scholar
  11. 11.
    Fuller JT, Thomson RL, Howe PRC, Buckley JD. Effect of vibration on muscle perfusion: a systematic review. Clin Physiol Funct Imaging. 2013;33(1):1–10.CrossRefGoogle Scholar
  12. 12.
    Lohman EB, Scott PJ, Maloney-Hinds C, Betts-Schwab H, Thorpe D. The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit. 2007;13(2):71–6.Google Scholar
  13. 13.
    Hazell TJ, Thomas GWR, DeGuire JR, Lemon PWR. Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur J Appl Physiol. 2008;104(5):903–8.CrossRefGoogle Scholar
  14. 14.
    Maloney-Hinds C, Petrofsky JS, Zimmerman G, Hessinger DA. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol The. 2009;11(1):39–43.CrossRefGoogle Scholar
  15. 15.
    Maloney-Hinds C, Petrofsky JS, Zimmerman G. The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm. Med Sci Monit. 2008;14(3):112–6.Google Scholar
  16. 16.
    Johnson PK, Feland JB, Johnson AW, Mack GW, Mitchell UH. Effect of whole body vibration on skin blood flow and nitric oxide production. J Diabetes Sci Technol. 2014;8(4):889–94.CrossRefGoogle Scholar
  17. 17.
    Cochrane DJ, Stannard SR, Sargeant T, Rittweger J. The rate of muscle temperature increase during acute whole-body vibration exercise. Eur J Appl Physiol. 2008;103(4):441–8.CrossRefGoogle Scholar
  18. 18.
    Otsuki T, Takanami Y, Aoi W, Kawai Y, Ichikawa H, Yoshikawa T. Arterial stiffness acutely decreases after whole-body vibration in humans. Acta Physiol. 2008;194(3):189–94.CrossRefGoogle Scholar
  19. 19.
    Rittweger J, Beller G, Felsenberg D. Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol. 2000;20(2):134–42.CrossRefGoogle Scholar
  20. 20.
    Hazell TJ, Lemon PWR. Synchronous whole-body vibration increases VO2 during and following acute exercise. Eur J Appl Physiol. 2012;112(2):413–20.CrossRefGoogle Scholar
  21. 21.
    Liao LR, Ng GYF, Jones AYM, Pang MYC. Cardiovascular stress induced by whole-body vibration exercise in individuals with chronic stroke. Phys Ther. 2015;95(7):966–77.CrossRefGoogle Scholar
  22. 22.
    Licurci MDB, Fagundes AD, Arisawa EAL. Acute effects of whole body vibration on heart rate variability in elderly people. J Bodyw Mov Ther. 2018;22(3):618–21.CrossRefGoogle Scholar
  23. 23.
    Figueroa A, Vicil F, Sanchez-Gonzalez MA. Acute exercise with whole-body vibration decreases wave reflection and leg arterial stiffness. Am J Cardiovasc Dis. 2011;1(1):60–7.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Figueroa A, Gil R, Sanchez-Gonzalez MA. Whole-body vibration attenuates the increase in leg arterial stiffness and aortic systolic blood pressure during post-exercise muscle ischemia. Eur J Appl Physiol. 2011;111(7):1261–8.CrossRefGoogle Scholar
  25. 25.
    Sanudo B, Alfonso-Rosa R, del Pozo-Cruz B, del Pozo-Cruz J, Galiano D, Figueroa A. Whole body vibration training improves leg blood flow and adiposity in patients with type 2 diabetes mellitus. Eur J Appl Physiol. 2013;113(9):2245–52.CrossRefGoogle Scholar
  26. 26.
    Beijer A, Rosenberger A, Weber T, Zange J, May F, Schoenau E, et al. Randomized controlled study on resistive vibration exercise (EVE Study): protocol, implementation and feasibility. J Musculoskelet Neuronal Interact. 2013;13(2):147–56.PubMedGoogle Scholar
  27. 27.
    Beijer A, Rosenberger A, Bolck B, Suhr F, Rittweger J, Bloch W. Whole-body vibrations do not elevate the angiogenic stimulus when applied during resistance exercise. PLoS One. 2013;8(11):e80143.CrossRefGoogle Scholar
  28. 28.
    Beijer A, Degens H, Weber T, Rosenberger A, Gehlert S, Herrera F, et al. Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed whole-body vibrations. Clin Physiol Funct Imaging. 2015;35(6):425–35.CrossRefGoogle Scholar
  29. 29.
    Cakar HI, Dogan S, Kara S, Rittweger J, Rawer R, Zange J. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector. Eur J Appl Physiol. 2017;117(6):1107–17.CrossRefGoogle Scholar
  30. 30.
    Rittweger J, Moss AD, Colier W, Stewart C, Degens H. Muscle tissue oxygenation and VEGF in VO-matched vibration and squatting exercise. Clin Physiol Funct Imaging. 2010;30(4):269–78.CrossRefGoogle Scholar
  31. 31.
    Manimmanakorn N, Manimmanakorn A, Phuttharak W, Hamlin MJ. Effects of whole body vibration on glycemic indices and peripheral blood flow in type II diabetic patients. Malays J Med Sci. 2017;24(4):55–63.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Figueroa A, Kalfon R, Madzima TA, Wong A. Effects of whole-body vibration exercise training on aortic wave reflection and muscle strength in postmenopausal women with prehypertension and hypertension. J Hum Hypertens. 2014;28(2):118–22.CrossRefGoogle Scholar
  33. 33.
    Figueroa A, Kalfon R, Madzima TA, Wong A. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension. Menopause. 2014;21(2):131–6.CrossRefGoogle Scholar
  34. 34.
    Figueroa A, Gil R, Wong A, Hooshmand S, Park SY, Vicil F, et al. Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women. J Hypertens. 2012;35(6):667–72.Google Scholar
  35. 35.
    Lai C-L, Chen H-Y, Tseng S-Y, Liao W-C, Liu B-T, Lee M-C, et al. Effect of whole-body vibration for 3 months on arterial stiffness in the middle-aged and elderly. Clin Interv Aging. 2014;9:821–7.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ghazalian F, Hakemi L, Pourkazemi L, Akhoond M. Effects of amplitudes of whole-body vibration training on left ventricular stroke volume and ejection fraction in healthy young men. Anatol J Cardiol. 2015;15(12):976–80.CrossRefGoogle Scholar
  37. 37.
    Menendez H, Ferrero C, Martin-Hernandez J, Figueroa A, Marin PJ, Herrero AJ. Chronic effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord. 2016;54(12):1169–75.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Sport, Exercise and NutritionMassey UniversityPalmerston NorthNew Zealand
  2. 2.Institute of Aerospace MedicineGerman Aerospace Center (DLR)CologneGermany
  3. 3.Department of Pediatrics and Adolescent MedicineUniversity of CologneCologneGermany

Personalised recommendations