Antimicrobial Screening: Foundations and Interpretation

  • Juan Bueno
Part of the Nanotechnology in the Life Sciences book series (NALIS)


It is a fact that the current antimicrobial susceptibility protocols do not belong to an adequate precision personalized medicine model. In this way, these methods can predict the therapy that will fail but not the therapy that will be successful, which limits its range of action and predisposes to the appearance of antimicrobial resistance. Thus, it is necessary to develop comprehensive models of antimicrobial susceptibility that combine antibiotic activity, pharmacokinetics, and virulence factors within the same protocol in order to predict the clinical response to antimicrobial treatment. For this reason, theranostics should be the model to be used in order to develop modern biosensors capable of detecting infectious disease and determining the appropriate treatment with the ability to predict its success and cure. In this order of ideas, the objective of this chapter is to rethink the disadvantages of current susceptibility methods in order to provide comprehensive solutions that allow the development of new methods that can slow the spread of antimicrobial resistance, as well as the development of new anti-infective medications.


Antimicrobial susceptibility testing Antimicrobial resistance Personalized medicine Theranostics Biosensors 



The author thanks Sebastian Ritoré for his collaboration and invaluable support during the writing of this chapter, as well as the graphics contained in this book.


  1. Ahmed, A., Rushworth, J. V., Hirst, N. A., & Millner, P. A. (2014a). Biosensors for whole-cell bacterial detection. Clinical Microbiology Reviews, 27(3), 631–646.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed, M. U., Saaem, I., Wu, P. C., & Brown, A. S. (2014b). Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Critical Reviews in Biotechnology, 34(2), 180–196.PubMedCrossRefGoogle Scholar
  3. Alamgir, A. N. M. (2018). Molecular pharmacognosy—A new borderline discipline between molecular biology and pharmacognosy. In Therapeutic use of medicinal plants and their extracts (Vol. 2, pp. 665–720). Cham: Springer.CrossRefGoogle Scholar
  4. Arseculeratne, S. N., & Arseculeratne, G. (2017). A re-appraisal of the conventional history of antibiosis and penicillin. Mycoses, 60(5), 343–347.PubMedCrossRefGoogle Scholar
  5. Arslan, N., Yılmaz, Ö., & Demiray-Gürbüz, E. (2017). Importance of antimicrobial susceptibility testing for the management of eradication in Helicobacter pylori infection. World Journal of Gastroenterology, 23(16), 2854.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Azeredo, J., Azevedo, N. F., Briandet, R., Cerca, N., Coenye, T., Costa, A. R., et al. (2017). Critical review on biofilm methods. Critical Reviews in Microbiology, 43(3), 313–351.PubMedCrossRefGoogle Scholar
  7. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79.PubMedCrossRefGoogle Scholar
  8. Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N. M., Martins, M., & Fernandes, A. R. (2018). Nano-strategies to fight multidrug resistant bacteria—“A Battle of the Titans”. Frontiers in Microbiology, 9.Google Scholar
  9. Beceiro, A., Tomás, M., & Bou, G. (2013). Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clinical Microbiology Reviews, 26(2), 185–230.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bengoechea, J. A., & Sa Pessoa, J. (2018). Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiology Reviews, 43(2), 123–144.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. J. (2017). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1), fux053.PubMedCentralPubMedGoogle Scholar
  12. Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M., & Høiby, N. (2013). Applying insights from biofilm biology to drug development—can a new approach be developed? Nature Reviews Drug Discovery, 12(10), 791–808.PubMedCrossRefGoogle Scholar
  13. Blondeau, J. M., & Fitch, S. D. (2019). Mutant prevention and minimum inhibitory concentration drug values for enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin tested against swine pathogens Actinobacillus pleuropneumoniae, Pasteurella multocida and Streptococcus suis. PLoS One, 14(1), e0210154.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buckheit, R. W., & Lunsford, R. D. (2017). In vitro performance and analysis of combination anti-infective evaluations. In Antimicrobial drug resistance (pp. 1329–1345). Cham: Springer.CrossRefGoogle Scholar
  15. Bueno, J. (2014). Biosensors in antimicrobial drug discovery: Since biology until screening platforms. Journal of Microbial & Biochemical Technology, S10.Google Scholar
  16. Burnham, C. A. D., Leeds, J., Nordmann, P., O’Grady, J., & Patel, J. (2017). Diagnosing antimicrobial resistance. Nature Reviews Microbiology, 15(11), 697.PubMedCrossRefGoogle Scholar
  17. Cairns, J., Ruokolainen, L., Hultman, J., Tamminen, M., Virta, M., & Hiltunen, T. (2018). Ecology determines how low antibiotic concentration impacts community composition and horizontal transfer of resistance genes. Communications Biology, 1(1), 35.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L., Quinn, T. C., et al. (2013). Better tests, better care: Improved diagnostics for infectious diseases. Clinical Infectious Diseases, 57(suppl_3), S139–S170.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Calvo, E., Walko, C., Dees, E. C., & Valenzuela, B. (2016). Pharmacogenomics, pharmacokinetics, and pharmacodynamics in the era of targeted therapies. American Society of Clinical Oncology Educational Book, 36, e175–e184.CrossRefGoogle Scholar
  20. Carlson-Banning, K. M., & Zechiedrich, L. (2015). Antibiotic classes and mechanisms of resistance. In Encyclopedia of metagenomics: Environmental metagenomics (pp. 20–31) Springer, New York, NY.Google Scholar
  21. Castro-Pastrana, L. I., Serrano-Martínez, P., & Domínguez-Ramírez, L. (2016). Drug safety approaches in anti-infective drug discovery and development. In Atta-ur-Rahman (Ed.), Frontiers in clinical drug research: Anti-infectives (Vol. 2, pp. 95–136). Bentham Science. Sharjah, United Arab Emirates.Google Scholar
  22. Cattò, C., & Cappitelli, F. (2019). Testing anti-biofilm polymeric surfaces: Where to start? International Journal of Molecular Sciences, 20(15), 3794.PubMedCentralCrossRefGoogle Scholar
  23. Centeno-Leija, S., Guzmán-Trampe, S., Rodríguez-Peña, K., Bautista-Tovar, D., Espinosa, A., Trenado, M., & Sánchez, S. (2016). Different approaches for searching new microbial compounds with anti-infective activity. In New weapons to control bacterial growth (pp. 395–431). Cham: Springer.CrossRefGoogle Scholar
  24. Choi, J., Yoo, J., Lee, M., Kim, E. G., Lee, J. S., Lee, S., et al. (2014). A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine, 6(267), 267ra174.PubMedCrossRefGoogle Scholar
  25. Ciofu, O., & Tolker-Nielsen, T. (2019). Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Frontiers in Microbiology, 10, 913.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cohen, N. R., Lobritz, M. A., & Collins, J. J. (2013). Microbial persistence and the road to drug resistance. Cell Host and Microbe, 13(6), 632–642.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Connors, K. P., Kuti, J. L., & Nicolau, D. P. (2013). Optimizing antibiotic pharmacodynamics for clinical practice. Pharmaceutica Analytica Acta, 4(3), 214.CrossRefGoogle Scholar
  28. Corona, F., & Martinez, J. L. (2013). Phenotypic resistance to antibiotics. Antibiotics, 2(2), 237–255.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Culyba, M. J., Mo, C. Y., & Kohli, R. M. (2015). Targets for combating the evolution of acquired antibiotic resistance. Biochemistry, 54(23), 3573–3582.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davies, R., & Wales, A. (2019). Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Comprehensive Reviews in Food Science and Food Safety, 18(3), 753–774.CrossRefGoogle Scholar
  31. Dijck, P. V., Sjollema, J., Cammue, B. P., Lagrou, K., Berman, J., d’Enfert, C., et al. (2018). Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial cell (Graz, Austria), 5(7), 300.CrossRefGoogle Scholar
  32. Doern, G. V., & Brecher, S. M. (2011). The clinical predictive value (or lack thereof) of the results of in vitro antimicrobial susceptibility tests. Journal of Clinical Microbiology, 49(9 Supplement), S11–S14.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Dougan, G., Dowson, C., Overington, J., & Participants, N. G. A. D. S. (2019). Meeting the discovery challenge of drug-resistant infections: Progress and focusing resources. Drug Discovery Today, 24(2), 452–461.PubMedCrossRefGoogle Scholar
  34. Ellington, M. J., Ekelund, O., Aarestrup, F. M., Canton, R., Doumith, M., Giske, C., et al. (2017). The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clinical Microbiology and Infection, 23(1), 2–22.PubMedCrossRefGoogle Scholar
  35. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC-S14459.CrossRefGoogle Scholar
  36. Fermini, B., Coyne, S. T., & Coyne, K. P. (2018). Clinical trials in a dish: A perspective on the coming revolution in drug development. SLAS DISCOVERY: Advancing Life Sciences RandD, 23(8), 765–776.Google Scholar
  37. Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876.PubMedCrossRefGoogle Scholar
  38. Foster, K. R., Schluter, J., Coyte, K. Z., & Rakoff-Nahoum, S. (2017). The evolution of the host microbiome as an ecosystem on a leash. Nature, 548(7665), 43–51.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Frickmann, H., Masanta, W. O., & Zautner, A. E. (2014). Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. BioMed Research International, 2014, 375681.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gajdács, M., Spengler, G., & Urbán, E. (2017). Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s cube of clinical microbiology? Antibiotics, 6(4), 25.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gjini, E., & Brito, P. H. (2016). Integrating antimicrobial therapy with host immunity to fight drug-resistant infections: Classical vs. adaptive treatment. PLoS Computational Biology, 12(4), e1004857.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Guthrie, L., & Kelly, L. (2019). Bringing microbiome-drug interaction research into the clinic. EBioMedicine, 44, 708.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hau, S. J., Haan, J. S., Davies, P. R., Frana, T., & Nicholson, T. L. (2018). Antimicrobial resistance distribution differs among methicillin resistant Staphylococcus aureus sequence type (ST) 5 isolates from health care and agricultural sources. Frontiers in Microbiology, 9, 2102.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hawkey, P. M., Warren, R. E., Livermore, D. M., McNulty, C. A., Enoch, D. A., Otter, J. A., & Wilson, A. P. R. (2018). Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/healthcare Infection Society/british Infection Association Joint Working Party. Journal of Antimicrobial Chemotherapy, 73(suppl_3), iii2–iii78.PubMedCrossRefPubMedCentralGoogle Scholar
  46. He, X., Xiong, L. H., Zhao, Z., Wang, Z., Luo, L., Lam, J. W. Y., et al. (2019). AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 9(11), 3223.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hughes, D., & Andersson, D. I. (2017). Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiology Reviews, 41(3), 374–391.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jahn, L. J., Munck, C., Ellabaan, M. M., & Sommer, M. O. (2017). Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Frontiers in Microbiology, 8, 816.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jeelani, S., Reddy, R. J., Maheswaran, T., Asokan, G. S., Dany, A., & Anand, B. (2014). Theranostics: A treasured tailor for tomorrow. Journal of Pharmacy and Bioallied Sciences, 6(Suppl 1), S6.PubMedCrossRefGoogle Scholar
  50. Jenkins, S. G., & Schuetz, A. N. (2012). Current concepts in laboratory testing to guide antimicrobial therapy. In Mayo Clinic proceedings (Vol. 87, No. 3, pp. 290–308). Elsevier.Google Scholar
  51. Kaczor, A. A., Medarametla, P., Bartuzi, D., Kondej, M., Matosiuk, D., & Poso, A. (2018). Molecular modelling approaches to antibacterial drug design and discovery. Frontiers in Anti-Infective Drug Discovery, 7(7), 153.CrossRefGoogle Scholar
  52. Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., et al. (2019). Antimicrobial polymers: The potential replacement of existing antibiotics? International Journal of Molecular Sciences, 20(11), 2747.PubMedCentralCrossRefGoogle Scholar
  53. Kaur, P., & Peterson, E. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Khan, Z. A., Siddiqui, M. F., & Park, S. (2019). Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel), 9(2), 49.CrossRefGoogle Scholar
  55. Kim, S., Masum, F., & Jeon, J. S. (2019). Recent developments of chip-based phenotypic antibiotic susceptibility testing. BioChip Journal, 13(1), 43–52.CrossRefGoogle Scholar
  56. Klümper, U., Recker, M., Zhang, L., Yin, X., Zhang, T., Buckling, A., & Gaze, W. H. (2019). Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. The ISME Journal 13(12):2927–2937.Google Scholar
  57. Knowles, L., Luth, W., & Bubela, T. (2017). Paving the road to personalized medicine: Recommendations on regulatory, intellectual property and reimbursement challenges. Journal of Law and the Biosciences, 4(3), 453–506.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kraemer, S. A., Ramachandran, A., & Perron, G. G. (2019). Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms, 7(6), 180.PubMedCentralCrossRefGoogle Scholar
  59. Kurhekar, J., Tupas, G. D., & Otero, M. C. B. (2019). In-vitro assays for antimicrobial assessment. In Phytochemistry: An in-silico and in-vitro update (pp. 279–298). Singapore: Springer.CrossRefGoogle Scholar
  60. Landecker, H. (2019). Antimicrobials before antibiotics: War, peace, and disinfectants. Palgrave Communications, 5(1), 45.CrossRefGoogle Scholar
  61. Lange, C., Alghamdi, W. A., Al-Shaer, M. H., Brighenti, S., Diacon, A. H., DiNardo, A. R., et al. (2018). Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis. Journal of Internal Medicine, 284(2), 163–188.CrossRefGoogle Scholar
  62. Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510–543.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Leonard, H., Colodner, R., Halachmi, S., & Segal, E. (2018). Recent advances in the race to design a rapid diagnostic test for antimicrobial resistance. ACS Sensors, 3(11), 2202–2217.PubMedCrossRefGoogle Scholar
  64. Lhermie, G., Gröhn, Y. T., & Raboisson, D. (2017). Addressing antimicrobial resistance: An overview of priority actions to prevent suboptimal antimicrobial use in food-animal production. Frontiers in Microbiology, 7, 2114.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research®, 36(1), 22–32.Google Scholar
  66. Li, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., et al. (2017). Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology, 8, 364.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liu, Y., Shi, L., Su, L., van der Mei, H. C., Jutte, P. C., Ren, Y., & Busscher, H. J. (2019). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 48(2), 428–446.PubMedCrossRefGoogle Scholar
  68. Macia, M. D., Rojo-Molinero, E., & Oliver, A. (2014). Antimicrobial susceptibility testing in biofilm-growing bacteria. Clinical Microbiology and Infection, 20(10), 981–990.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mallidi, S., Anbil, S., Bulin, A. L., Obaid, G., Ichikawa, M., & Hasan, T. (2016). Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy. Theranostics, 6(13), 2458.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Marciello, M., Pellico, J., Fernandez-Barahona, I., Herranz, F., Ruiz-Cabello, J., & Filice, M. (2016). Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus, 6(6), 20160055.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Marston, H. D., Dixon, D. M., Knisely, J. M., Palmore, T. N., & Fauci, A. S. (2016). Antimicrobial resistance. JAMA, 316(11), 1193–1204.PubMedCrossRefGoogle Scholar
  72. Maugeri, G., Lychko, I., Sobral, R., & Roque, A. C. (2019). Identification and antibiotic-susceptibility profiling of infectious bacterial agents: A review of current and future trends. Biotechnology Journal, 14(1), 1700750.CrossRefGoogle Scholar
  73. Maurer, F. P., Christner, M., Hentschke, M., & Rohde, H. (2017). Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: Implications for patient care and antimicrobial stewardship programs. Infectious Disease Reports, 9(1), 6839.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mauri, C., Principe, L., Bracco, S., Meroni, E., Corbo, N., Pini, B., & Luzzaro, F. (2017). Identification by mass spectrometry and automated susceptibility testing from positive bottles: A simple, rapid, and standardized approach to reduce the turnaround time in the management of blood cultures. BMC Infectious Diseases, 17(1), 749.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mehrotra, P. (2016). Biosensors and their applications–a review. Journal of Oral Biology and Craniofacial Research, 6(2), 153–159.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Menden, M. P., Wang, D., Mason, M. J., Szalai, B., Bulusu, K. C., Guan, Y., et al. (2019). Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications, 10(1), 2674.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Metzger, S. W., Howson, D. C., Goldberg, D. A., & Buttry, D. A. (2017). U.S. Patent No. 9,657,327. Washington, D.C.: U.S. Patent and Trademark Office.Google Scholar
  78. Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., et al. (2017). The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), e00036–e00017.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miller, M. B., Atrzadeh, F., Burnham, C. A. D., Cavalieri, S., Dunn, J., Jones, S., et al. (2019). Clinical utility of advanced microbiology testing tools. Journal of Clinical Microbiology, 57(9), e00495–e00419.PubMedPubMedCentralGoogle Scholar
  80. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J., & Prunotto, M. (2017). Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nature Reviews Drug Discovery, 16(8), 531.PubMedCrossRefGoogle Scholar
  81. Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2), 1–36.Google Scholar
  82. Nguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., et al. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 421.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Nicolaou, K. C., & Rigol, S. (2018). A brief history of antibiotics and select advances in their synthesis. The Journal of Antibiotics, 71(2), 153.PubMedCrossRefGoogle Scholar
  84. O’Connell, K. M., Hodgkinson, J. T., Sore, H. F., Welch, M., Salmond, G. P., & Spring, D. R. (2013). Combating multidrug-resistant bacteria: Current strategies for the discovery of novel antibacterials. Angewandte Chemie International Edition, 52(41), 10706–10733.PubMedCrossRefGoogle Scholar
  85. Onufrak, N. J., Forrest, A., & Gonzalez, D. (2016). Pharmacokinetic and pharmacodynamic principles of anti-infective dosing. Clinical Therapeutics, 38(9), 1930–1947.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Park, M., Tsai, S. L., & Chen, W. (2013). Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors, 13(5), 5777–5795.PubMedCrossRefGoogle Scholar
  87. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309–318.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rawson, T. M., Gowers, S. A., Freeman, D. M., Wilson, R. C., Sharma, S., Gilchrist, M., et al. (2019). Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: A first-in-human evaluation in healthy volunteers. The Lancet Digital Health, 1(7), e335–e343.CrossRefGoogle Scholar
  90. Rello, J., Van Engelen, T. S. R., Alp, E., Calandra, T., Cattoir, V., Kern, W. V., et al. (2018). Towards precision medicine in sepsis: A position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clinical Microbiology and Infection, 24(12), 1264–1272.PubMedCrossRefGoogle Scholar
  91. Rios, A. C., Moutinho, C. G., Pinto, F. C., Del Fiol, F. S., Jozala, A., Chaud, M. V., et al. (2016). Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiological Research, 191, 51–80.PubMedCrossRefGoogle Scholar
  92. Römling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272(6), 541–561.PubMedCrossRefGoogle Scholar
  93. Sahlgren, C., Meinander, A., Zhang, H., Cheng, F., Preis, M., Xu, C., et al. (2017). Tailored approaches in drug development and diagnostics: From molecular design to biological model systems. Advanced Healthcare Materials, 6(21), 1700258.CrossRefGoogle Scholar
  94. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O., & Feist, A. M. (2019). The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 56, 1.PubMedCrossRefGoogle Scholar
  95. Schechner, V., Temkin, E., Harbarth, S., Carmeli, Y., & Schwaber, M. J. (2013). Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clinical Microbiology Reviews, 26(2), 289–307.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8(1), 39.PubMedCentralCrossRefPubMedGoogle Scholar
  97. Schumacher, A., Vranken, T., Malhotra, A., Arts, J. J. C., & Habibovic, P. (2018). In vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. European Journal of Clinical Microbiology and Infectious Diseases, 37(2), 187–208.PubMedCrossRefGoogle Scholar
  98. Sherpa, R. T., Reese, C. J., & Aliabadi, H. M. (2015). Application of iChip to grow “uncultivable” microorganisms and its impact on antibiotic discovery. Journal of Pharmacy and Pharmaceutical Sciences, 18(3), 303–315.PubMedCrossRefGoogle Scholar
  99. Siest, G., & Schallmeiner, E. (2014). Pharmacogenomics and Theranostics in Practice: A summary of the Euromedlab-ESPT (The European Society of Pharmacogenomics and Theranostics) satellite symposium, May 2013. EJIFCC, 24(3), 85.PubMedCentralPubMedGoogle Scholar
  100. Singh, S., Singh, S. K., Chowdhury, I., & Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal, 11, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Smith, K. P., & Kirby, J. E. (2016). Validation of a high-throughput screening assay for identification of adjunctive and directly acting antimicrobials targeting carbapenem-resistant Enterobacteriaceae. Assay and Drug Development Technologies, 14(3), 194–206.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stratton, C. W. (2018). Advanced phenotypic antimicrobial susceptibility testing methods. In Advanced techniques in diagnostic microbiology (pp. 69–98). Cham: Springer.CrossRefGoogle Scholar
  103. Su, Y. C., Jalalvand, F., Thegerström, J., & Riesbeck, K. (2018). The interplay between immune response and bacterial infection in COPD: Focus upon non-typeable Haemophilus influenzae. Frontiers in Immunology, 9, 2530.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sy, S. K., & Derendorf, H. (2016). Pharmacokinetics I: PK-PD approach, the case of antibiotic drug development. In Clinical pharmacology: Current topics and case studies (pp. 185–217). Cham: Springer.CrossRefGoogle Scholar
  105. Syal, K., Mo, M., Yu, H., Iriya, R., Jing, W., Guodong, S., et al. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7(7), 1795.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tannert, A., Grohs, R., Popp, J., & Neugebauer, U. (2019). Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: Recent achievements and impact. Applied Microbiology and Biotechnology, 103(2), 549–566.PubMedCrossRefGoogle Scholar
  107. Thaler, D. S., Head, M. G., & Horsley, A. (2019). Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health. BMC Infectious Diseases, 19(1), 120.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tsuji, B. T., Pogue, J. M., Zavascki, A. P., Paul, M., Daikos, G. L., Forrest, A., et al. (2019). International consensus guidelines for the optimal use of the polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 39(1), 10–39.CrossRefGoogle Scholar
  109. Van Gerven, N., Van der Verren, S. E., Reiter, D. M., & Remaut, H. (2018). The role of functional amyloids in bacterial virulence. Journal of Molecular Biology, 430(20), 3657–3684.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Veiga, R. P., & Paiva, J. A. (2018). Pharmacokinetics–pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Critical Care, 22(1), 233.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277.PubMedPubMedCentralGoogle Scholar
  112. Vidic, J., Manzano, M., Chang, C. M., & Jaffrezic-Renault, N. (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Veterinary Research, 48(1), 11.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Volz, C., Ramoni, J., Beisken, S., Galata, V., Keller, A., Plum, A., et al. (2019). Clinical resistome screening of 1,110 Escherichia coli isolates efficiently recovers diagnostically relevant antibiotic resistance biomarkers and potential novel resistance mechanisms. Frontiers in Microbiology, 10, 1671.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wales, A. D., & Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4(4), 567–604.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Walper, S. A., Lasarte Aragonés, G., Sapsford, K. E., Brown, C. W., III, Rowland, C. E., Breger, J. C., & Medintz, I. L. (2018). Detecting biothreat agents: From current diagnostics to developing sensor technologies. ACS Sensors, 3(10), 1894–2024.PubMedCrossRefGoogle Scholar
  116. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Weiss, A., & Nowak-Sliwinska, P. (2017). Current trends in multidrug optimization: An alley of future successful treatment of complex disorders. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 22(3), 254–275.Google Scholar
  118. Yap, M. N. F. (2013). The double life of antibiotics. Missouri Medicine, 110(4), 320.PubMedPubMedCentralGoogle Scholar
  119. Yen, P., & Papin, J. A. (2017). History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biology, 15(8), e2001586.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhao, X., & Drlica, K. (2001). Restricting the selection of antibiotic-resistant mutants: A general strategy derived from fluoroquinolone studies. Clinical Infectious Diseases, 33(Supplement_3), S147–S156.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan Bueno
    • 1
  1. 1.Senior ResearcherResearch Center of Bioprospecting and Biotechnology for Biodiversity Foundation (BIOLABB)Armenia, QuindioColombia

Personalised recommendations