Advertisement

Notes on the \(\mathbb A_{{\mathrm {inf}}}\)-Cohomology of Integral p-Adic Hodge Theory

  • Matthew MorrowEmail author
Conference paper
  • 53 Downloads
Part of the Simons Symposia book series (SISY)

Abstract

We present a detailed overview of the construction of the \(\mathbb A_{{\mathrm {inf}}}\)-cohomology theory from the preprint Integral p-adic Hodge theory, joint with Bhatt and Scholze. We focus particularly on the p-adic analogue of the Cartier isomorphism via relative de Rham–Witt complexes.

Keywords

p-adic Hodge theory Prismatic cohomology Perfectoid de Rham–Witt complex 

Notes

Acknowledgements

It is a pleasure to take this chance to thank my coauthors Bhargav Bhatt and Peter Scholze for the discussions and collaboration underlying [5], from which all results in these notes are taken. I am also grateful to the participants of the mini-course at l’IMJ on which these notes are based, including J.-F. Dat, C. Cornut, L. Fargues, J.-M. Fontaine, M.-H. Nicole, and B. Klingler, for their many helpful comments and insightful questions.

References

  1. 1.
    Berthelot, P., and Ogus, A. Notes on crystalline cohomology. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.zbMATHGoogle Scholar
  2. 2.
    Bhatt, B. Specializing varieties and their cohomology from characteristic 0 to characteristic \(p\). 43–88.Google Scholar
  3. 3.
    Bhatt, B., and Scholze, P. Prisms and prismatic cohomology. arXiv:1905.08229 (2019).
  4. 4.
    Bhatt, B., Morrow, M., and Scholze, P. Integral \(p\)-adic Hodge theory—announcement. Math. Res. Lett. 22, 6 (2015), 1601–1612.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bhatt, B., Morrow, M., and Scholze, P. Integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219–397.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhatt, B., Morrow, M., and Scholze, P. Topological Hochschild homology and integral \(p\)-adic Hodge theory. Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bloch, S., and Kato, K. \(p\)-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math., 63 (1986), 107–152.CrossRefGoogle Scholar
  8. 8.
    Caruso, X. Conjecture de l’inertie modérée de Serre. Invent. Math. 171, 3 (2008), 629–699.MathSciNetCrossRefGoogle Scholar
  9. 9.
    \(\check{\rm C}\)esnavičius, K. e., and Koshikawa, T. The \(A_{inf}\)-cohomology in the semistable case. Compos. Math. 155, 11 (2019), 2039–2128.Google Scholar
  10. 10.
    Davis, C., and Kedlaya, K. S. On the Witt vector Frobenius. Proc. Amer. Math. Soc. 142, 7 (2014), 2211–2226.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elkik, R. Solutions d’équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (1974).Google Scholar
  12. 12.
    Faltings, G. Crystalline cohomology and p-adic Galois-representations. In Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988). Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80.Google Scholar
  13. 13.
    Faltings, G. Integral crystalline cohomology over very ramified valuation rings. J. Amer. Math. Soc. 12, 1 (1999), 117–144.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fontaine, J.-M. Exposé II: Les corps des périodes p-adiques. Avec un appendice par Pierre Colmez: Le nombres algébriques sont denses dans \(B_{dR}^+\). In Périodes \(p\)-adiques. Séminaire du Bures-sur-Yvette, France, 1988. Paris: Société Mathématique de France, 1994, pp. 59–111, appendix 103–111.Google Scholar
  15. 15.
    Fontaine, J.-M., and Messing, W. p-adic periods and p-adic étale cohomology. In Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), vol. 67 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1987, pp. 179–207.Google Scholar
  16. 16.
    Huber, R. A generalization of formal schemes and rigid analytic varieties. Math. Z. 217, 4 (1994), 513–551.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huber, R. Étale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig, 1996.Google Scholar
  18. 18.
    Illusie, L. Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12, 4 (1979), 501–661.Google Scholar
  19. 19.
    Illusie, L., and Raynaud, M. Les suites spectrales associées au complexe de de Rham-Witt. Inst. Hautes Études Sci. Publ. Math., 57 (1983), 73–212.CrossRefGoogle Scholar
  20. 20.
    Kedlaya, K. Some ring-theoretic properties of \(A_{inf}\). Available at the author’s webpage (2016).Google Scholar
  21. 21.
    Lang, J., and Ludwig, J. \(\bf A\it _{\text{inf}}\) is infinite dimensional. arXiv:1906.03583 (2019).
  22. 22.
    Langer, A., and Zink, T. De Rham-Witt cohomology for a proper and smooth morphism. J. Inst. Math. Jussieu 3, 2 (2004), 231–314.MathSciNetCrossRefGoogle Scholar
  23. 23.
    NizioŁ, W. Crystalline conjecture via \(K\)-theory. Ann. Sci. École Norm. Sup. (4) 31, 5 (1998), 659–681.Google Scholar
  24. 24.
    Scholze, P. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Scholze, P. \(p\)-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi 1 (2013), e1, 77.Google Scholar
  26. 26.
    Scholze, P. Canonical \(q\)-deformations in arithmetic geometry. Ann. Fac. Sci. Toulouse Math. (6) 26, 5 (2017), 1163–1192.Google Scholar
  27. 27.
    Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.Google Scholar
  28. 28.
    Tsuji, T. \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137, 2 (1999), 233–411.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut de Mathématiques de Jussieu-Paris Rive GaucheSorbonne UniversitéParisFrance

Personalised recommendations